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ABSTRACT 
 
 
 
Meeting future system requirements by integrating existing stand-alone systems is 

attracting renewed interest. Computer communications advances, functional similarities 

in related systems, and enhanced information description mechanisms suggest that 

improved capabilities may be possible; but full realization of this potential can only be 

achieved if stand-alone systems are fully interoperable.  Interoperability among 

independently developed heterogeneous systems is difficult to achieve: systems often 

have different architectures, different hardware platforms, different operating systems, 

different host languages and different data models. 

The Object-Oriented Method for Interoperability (OOMI) introduced in this 

dissertation resolves modeling differences in a federation of independently developed 

heterogeneous systems, thus enabling system interoperation.  First a model of the 

information and operations shared among systems, termed a Federation Interoperability 

Object Model (FIOM), is defined.  Construction of the FIOM is done prior to run-time 

with the assistance of a specialized toolset, the OOMI Integrated Development 

Environment (OOMI IDE).  Then at runtime OOMI translators utilize the FIOM to 

automatically resolve differences in exchanged information and in inter-system operation 

signatures. 
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I. INTRODUCTION 
 
 
 

A. QUEST FOR SYSTEM INTEROPERABILITY 
Past acquisition and development practices in the Department of Defense (DoD) 

have led to the procurement of numerous special-purpose, non-interconnected software-

intensive systems for application areas varying from embedded weapon system software 

to logistic management systems.  Advances in computer communications technology, the 

recognition of common areas of functionality in related systems, and an increased 

awareness of how enhanced information access can lead to improved capability are 

driving an interest toward integration of current stand-alone systems to meet future 

system requirements.  In addition, the integration of Commercial Off-the-Shelf Software 

(COTS) and Government Off-the-Shelf Software (GOTS) with existing legacy systems 

offers an attractive alternative for enhancing the capabilities of these systems without 

incurring the expense and time required for a new software development. 

An example of where independently developed systems might be interconnected 

to provide an increase in capability over that provided by the individual components is 

illustrated in Figure I-1.  In the figure, a ground-based forward observer with a hand-held 

Battlefield Digital Assistant (BDA) gathers intelligence and targeting information about 

the field of battle.  The information gathered by the forward observer is transmitted via a 

battlefield wireless network to an in-theater intelligence cell where it is processed on a 

Command and Control, Computers, Communication, and Intelligence (C4I) system for 

forwarding to a sea-based task force.  The information is relayed to a strike planning team 

onboard the task force aircraft carrier where the targeting information is used to plan a 

Tomahawk strike mission using the Tomahawk Planning System (TPS) [TWS02].  Strike 

mission data is forwarded to a task force launch platform where the planned mission is 

loaded into the Advanced Tactical Weapons Control System (ATWCS) used to launch a 

Tomahawk strike [TWS02].  The launch platform then executes the mission to destroy 

the target initially designated by the forward observer.  In the scenario portrayed above, a 

number of independently developed systems are interconnected to provide a system-of-

systems whose combined capability exceeds that of the individual components. 
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Figure I-1. Quest for System Interoperability 

 
By interconnectivity, I refer to the ability of systems to communicate and 

exchange information.  Merely interconnecting these systems is not sufficient for 

achieving the capability improvement desired.  Full realization of the potential synergistic 

benefits can only be achieved if system interoperability is attained.  System 

interoperability involves not only the ability of systems to exchange information but also 

includes the capability for interaction and joint execution of tasks. [LISI98, Pit97].  

Therefore, the objective in creating such a system-of-systems is not merely providing 

system interconnectivity, but in achieving an interoperable system federation. 
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In this dissertation I make a distinction between a federation of systems and an 

integrated system of components.  I use the term integrated system to describe an 

interconnected compilation of homogenous components produced by a development team 

that shares common objectives and has a common view of the problem environment 

being modeled.  The term system federation is used to describe an interconnected 

collection of independently developed heterogeneous systems or components.  The 

method presented in this dissertation for achieving system interoperability focuses on the 



system federation- how to achieve interoperability among a number of independently 

developed systems or components that were not originally intended to interoperate.  If 

constructed properly, component interoperation should be one of the key design 

requirements for the integrated system and the types of heterogeneities for which the 

proposed method is designed to resolve should not be a factor. 

A prime difficulty in achieving interoperability among heterogeneous components 

of a system federation is that the component systems were developed independently, 

without any requirement for interaction.  Thus systems may have different architectures, 

different hardware platforms, different operating systems, different host languages and 

different data models.  For example, as indicated in Figure I-2, each component system 

might have a different model of the vehicle being targeted by the forward observer.  For 

instance, the forward observer’s BDA might be implemented on a Palm wireless hand-

held device, running Palm-OS and a special-purpose targeting application.  The data 

model used to represent the targeted vehicle employs a MechanizedCombatVehicle record 

structure with elements mcvType used to indicate whether the vehicle is a tank, personnel 

carrier, or reconnaissance vehicle; mcvLocation providing the vehicle’s location using 

Military Grid Reference System (MGRS) coordinates; mcvTime giving the time of 

observation at the specified location in Local Mean Time (LMT); and mcvRadius 

specifying the maneuvering range of the vehicle in kilometers (km). 

Similarly, the C4I system might be implemented on a Microsoft Windows  based 

workstation implemented in C++.  The C4I system represents the targeted vehicle using 

an ArmoredMilitaryVehicle structure containing elements designation specifying the type 

of vehicle (main battle tank, missile launcher, armored personnel carrier, etc.); position 

providing the vehicle’s coordinates using latitude and longitude; and time in Greenwich 

Mean Time (GMT) providing the moment when vehicle observation was made and its 

position recorded. 

Finally, the unix-based TPS is implemented in Ada and uses an ArmoredFighting-

Vehicle record structure to model the targeted vehicle.  The ArmoredFightingVehicle 

record includes components afvClassification specifying the type of vehicle (battle tank, 

rocket launcher, truck, etc.); afvLocation providing the vehicle coordinates using latitude 
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and longitude; afvObsTime giving the time of observation of the vehicle at the specified 

location in GMT; and afvStatus indicating whether the vehicle is operational, damaged, 

or destroyed. 

Short of redeveloping a new system using the consolidated requirements from the 

various component systems and a common architecture, hardware platform, operating 

system, host language, etc. (a cost prohibitive approach), a means must be devised to 

achieve the goal of component interoperability in the face of expected limited acquisition 

budgets. 
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Figure I-2. Impediments to System Interoperability 

 
B. LIMITATIONS WITH CURRENT APPROACHES TOWARD 

ACHIEVING INTEROPERABILITY 
Current approaches to achieving interoperability among heterogeneous systems 

include several limitations.  First, they do not provide a means for resolving the complete 

spectrum of modeling differences found among heterogeneous systems.  Second, they do 

not provide assistance in determining when different system models refer to the same 

entity from the problem domain.  Third, in order to access another component or system’s 

state or exercise its behavior, most current approaches require the requesting system to 
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utilize the provider system’s model of its state or behavior to access its information.  This 

usually requires modification to the existing systems in order to enable interoperation, 

significantly limiting the applicability of the approach when constructing a system 

federation from existing components where component modification is restricted by cost 

or other concerns.  Fourth, most approaches utilize a direct point-to-point conversion 

process for resolving modeling difference among systems vice a two-step conversion 

process using an intermediate model.  For a federation of more than three systems, a 

point-to-point approach requires a greater number of translations to be defined than does 

the two-step process.  Fifth, most approaches provide no or limited support to 

development of the translations required to resolve modeling differences among systems.  

Finally, most approaches are concerned only with the resolution of modeling differences 

for information exchanged among systems and do not provide the capability for resolving 

possible differences in the signatures used to access the behavior of corresponding 

methods on different systems. One of the underlying causes of the limitations found in 

current approaches toward achieving interoperability is the failure to provide a 

comprehensive model of the information exported from or imported to systems in a 

federation.  Capture of this information is critical in order to be able to identify 

opportunities for information exchange and joint task execution and to identify areas 

where modeling differences among systems must be resolved. 

C. RESEARCH QUESTION AND HYPOTHESIS 
To overcome the limitations identified in Section I.B above, I explore 

technologies and methods to provide an answer to the following question:  Given N 

heterogeneous systems, can we resolve the differences in data models and ensure 

consistency in data mapping to enable interoperability among the systems?  In response 

to the above question I offer the following hypothesis:  By using a model-based 

approach, a computer-aided methodology can be provided to aid in the resolution of data 

modeling differences among systems targeted for integration in order to enable system 

interoperability.  The Object-Oriented Method for Interoperability (OOMI) presented in 

this dissertation provides such a methodology. 
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D. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI) 
OVERVIEW 
The current state-of-the-art for integration of heterogeneous systems involves 

manually resolving differences in data modeling and mapping for each interface between 

systems, in an inherently customized manner.  The first step in advancing the state-of-

the-art is to develop a general model of the interoperation among systems.  This model, 

termed a Federation Interoperability Object Model (FIOM) under the OOMI, captures the 

various component system models of the state and behavior information shared between 

systems as presented by a component system’s external interface.  The FIOM also 

captures syntactic and semantic information about a component model in order to enable 

an interoperability engineer to determine whether two component models refer to the 

same entity in the problem domain.  By interoperability engineer I refer to the person or 

persons charged with FIOM construction.  Expected qualifications for an interoperability 

engineer are provided in Section V.B and their role in the FIOM construction process 

detailed in Chapter V and Appendix A.  Finally, the FIOM includes the mechanisms 

required for resolving differences among component models. 

While creation of a model to capture the interoperation among systems is itself an 

advancement over the methods currently used for system interoperability, the true 

benefits of the OOMI lie in the foundation provided by the FIOM for application of 

computer aid.  The first application of computer aid comes in the construction of an 

FIOM for a specified federation of systems.  The OOMI includes an Integrated 

Development Environment (IDE) to aid the interoperability engineer in FIOM 

construction during federation development prior to runtime.  The IDE provides 

computer aid to the interoperability engineer in the areas of component model 

correlation, translation definition, and FIOM construction. 

The final area where computer aid is applied toward achieving system 

interoperability under the OOMI is in the runtime resolution of modeling differences 

among systems in a federation.  The OOMI includes translators that use information 

contained in the FIOM created prior to runtime for resolving heterogeneities among 

federation systems at runtime. 
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E. CONTRIBUTIONS PROVIDED BY THIS DISSERTATION 
Development of a model for capturing the shared state and behavior of the 

components of a system federation, the use of computer aid in model construction, and 

use of the resultant model to automatically resolve heterogeneities in the state and 

behavior information shared among federation components are the principal contributions 

of the OOMI presented in this dissertation.  Furthermore, the OOMI provides a method 

for addressing the resolution of the complete spectrum of heterogeneities found among 

systems, something the previous interoperability work does not accomplish.  Key 

elements of these contributions include:  

• Providing a model to capture state and behavior shared among systems in a 
federation; extremely valuable aid in determining what state and behavior 
information is available for sharing among systems, particularly when 
modifications are required to an existing federation developed under the OOMI; 

• Classification of modeling differences among autonomously developed, 
heterogeneous systems as differences in what is being modeled (view) and 
differences in how the modeled information is represented (representation); 

• Introduction of a view inheritance hierarchy to capture the relationships among 
different system models, and the exploitation of Liskov and Wing’s behavioral 
notion of subtyping to determine when one model of a real-world entity’s state 
and behavior may be suitable for use by another [LW94, WO00]; 

• Introduction of a set of interoperability engineer defined translations to resolve 
differences in representation between models having the same view of a real-
world entity; 

• Application of computer-aid for establishing correspondence among different 
models of information shared among systems; 

• Use of computer-aid in creating the translations used to resolve modeling 
differences among systems; 

• Automation of the run-time process used for resolving modeling differences 
among the state and behavior shared between systems; 

• Ability for achieving interoperability among a federation of legacy systems 
without requiring extensive modifications to the existing systems. 
 

F. IMPACT AND LONG-TERM SIGNIFICANCE OF DISSERTATION’S 
CONTRIBUTIONS 
Integration of heterogeneous legacy systems has historically been an essentially 

manual, labor intensive, and costly evolution.  The ability to automate part or all of this 

integration process holds the promise of providing enhanced capability at significant time 

and cost savings. 
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While the focus of this dissertation is to provide a means for enabling existing 

systems to interoperate, applicability of the OOMI is not limited to this context.  The goal 

for new system development should be to include requirements for interoperability into 

the system design.  However, the relevance of the OOMI will not be lost even if 

interoperability requirements are designed into systems from the start.  The desire to add 

new capability to an existing system without redevelopment will make the contributions 

provided in this dissertation relevant even if the goal of including interoperability 

requirements into a system’s design is achieved.  In addition, the same methodology for 

integrating heterogeneous legacy systems can be applied to the integration of COTS and 

GOTS components with existing systems to enhance their capability while minimizing 

cost, an attractive possibility for any area of potential application. 

G. DISSERTATION ORGANIZATION 
The remainder of this dissertation is organized as follows.  In Chapter II a survey 

of previous work toward achieving interoperability among independently developed 

systems is conducted.  In this chapter I look at the causes and types of modeling 

differences among systems and provide a comparison of the most pertinent existing 

approaches to attaining interoperability among heterogeneous systems using a set of 

common criteria for system evaluation. 

Chapter III  provides background information and theory on potential methods to 

be used for identifying correspondences among information exported or imported by 

different systems in a federation.  Identification of correspondences among information is 

essential for determining whether systems can interoperate.  Unless there are 

commonalities in the information modeled by two systems, interoperation is not possible.  

Included in this chapter is an identification of a number of measures for evaluating the 

effectiveness of various correlation methodologies as well as a discussion of several 

methodologies considered for implementation in the OOMI IDE. 
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In Chapter IV I introduce the Object-Oriented Method for Interoperability 

(OOMI) and provide an overview of the method’s major components.  The Federation 

Interoperability Object Model (FIOM) captures the state and behavior shared among 

systems in a federation as well as the information needed to establish correspondences 

among component models and to resolve any modeling differences between 



corresponding systems.  The OOMI Integrated Development Environment (IDE) is used 

for constructing an instance of the FIOM for a specified federation of systems.  The 

translator uses information captured in a specified FIOM to resolve modeling differences 

among federation components at runtime. 

Chapter V discusses the OOMI IDE purpose and identifies a number of 

considerations that should be taken into account in constructing an IDE for use in FIOM 

development.  A process for FIOM development is also introduced from which 

opportunities for application of computer aid are identified.  Finally, an initial prototype 

OOMI IDE is presented and an overview of its major components and Graphical User 

Interface (GUI) provided. 

Chapter VI  discusses the opportunities for correlation method application during 

FIOM construction.  The design of the correlation methodology chosen for the OOMI 

IDE implementation is also covered. 

Chapter VII covers the translator used under the OOMI to resolve modeling 

differences among federation components during their runtime operation.  Included in the 

discussion is a look at the architectural alternatives for translator implementation as well 

as a discussion on translator functionality used when converting exported state and 

behavior information from the source model to the equivalent model to be used for 

destination system importation. 

Chapter VIII revisits the research question presented in Section I.C to evaluate the 

OOMI’s success in satisfying the research hypothesis.  From this evaluation a conclusion 

is reached and areas for future research suggested. 
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II. SURVEY OF PREVIOUS WORK ON ACHIEVING 
INTEROPERABILITY AMONG INDEPENDENTLY DEVELOPED 

SYSTEMS 
 
 
 

A. MODELING DIFFERENCES AMONG SYSTEMS 

1. Causes of Modeling Differences 
Chapter I provided an example of how modeling differences among systems can 

impact their interoperability.  Before looking at the types of modeling differences that can 

arise in independently developed systems, it is important to look at why these differences 

occur in the first place.  In their research related to database schema integration, Batini et 

al. [BLN86] described three major causes of representational heterogeneity: 

Different perspectives.  The different needs of users, program managers, and design 
teams can lead to differences in data representations even when modeling the 
same information. 

Equivalent constructs.  Equivalent models of the same real-world domain can be 
created using different combinations of the same basic modeling constructs.  

Incompatible design specifications.  Different application design specifications can 
result in different database schemas for the same real-world domain. 
 
While originally cited in the context of database schema integration, these factors 

also apply directly to the types of model heterogeneity found in autonomously developed 

systems.  

2. Kinds of Modeling Differences 
Early work in multidatabase architectures categorized modeling differences found 

in heterogeneous database systems.  One of the pioneers in early multidatabase efforts, 

Gio Wiederhold, defined seven classes of heterogeneity found in autonomously 

developed database systems [Wie93].  The kinds of heterogeneity defined for databases 

closely relate to the kinds of heterogeneity found in the interoperability context.  Using 

Wiederhold’s classification as a baseline and reflecting views from Hammer and McLeod 

[HM99], Holowczak and Li [HL96], Kim and Seo [KS91], and Kahng and McLeod 

[KM98], I describe eight classes of heterogeneity found when trying to achieve 

interoperability among a federation of independently developed systems.  I have added 

heterogeneity of structure to Wiederhold’s list and renamed heterogeneity of 
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representation to heterogeneity of presentation to eliminate potential overloading in the 

use of the term representation.  As a result, the following classification of modeling 

differences is used in this document: 

• Heterogeneity of Hardware and Operating Systems  
• Heterogeneity of Organizational Models 
• Heterogeneity of Structure 
• Heterogeneity of Presentation 
• Heterogeneity of Meaning 
• Heterogeneity of Scope 
• Heterogeneity of Level of Abstraction 
• Heterogeneity of Temporal Validity 

 
a. Heterogeneity of Hardware and Operating Systems 
Heterogeneity of hardware and operating systems relates to differences in 

the hardware and operating system platforms encountered when integrating 

autonomously developed systems [HM99, Wie93].  The continual evolution of computer 

hardware almost guarantees differences in the platforms used to host the components of a 

system federation, particularly if the federation is constructed or modified over a period 

of time.  Hardware platform differences can result in differences in the physical format of 

information on two systems, such as the word size used to represent the primitive 

language types, or style of data format (Big Endian versus Little Endian) [Fei99].  

Although variety in operating system types appears to be converging to three major 

families- Microsoft Windows, Apple Macintosh, or UNIX derivatives- evolution within 

these families will ensure that we must continue to contend with operating system 

differences. 

b. Heterogeneity of Organizational Models 
Heterogeneity of organizational models refers to differences in the 

conceptual models used by autonomously developed systems.  In the context of 

multidatabase systems, conceptual model differences relate to dissimilarities in the 

database models used, such as network, hierarchical, relational, universal, or object 

structured [HM99, Wie93].  In the context of interoperability, heterogeneity of 

organizational models can refer to differences in analysis and design principles 
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employed, such as use of an Object-Oriented Analysis and Design (OOAD) approach 

versus a structured analysis approach [Pre01]. 

c. Heterogeneity of Structure 
Variations in the structure of how information is arranged can occur 

among systems using the same organizational model.  These variations can include 

differences in structural composition, possible schema mismatches, and variations due to 

the presence of implied information.  Differences in structural composition arise when a 

real-world entity is modeled as an object on one system and an attribute in another, e.g., 

such as an aircraft route being modeled as an attribute of an aircraft mission object on 

one system (as one element of the overall mission) and as a separate entity used for 

deconflicting missions in another [HL96].  Schema mismatches can occur when similar 

concepts are modeled differently in the schemas of corresponding systems, e.g., a 

relationship that is modeled as one-to-one in one schema and one-to-many in another 

[HM99].  Finally, structural differences can arise when information that is explicitly 

modeled in one system is implicitly defined in another.  An example of this kind of 

structural heterogeneity is seen when the type of an object is explicitly specified in one 

schema and implied from the object’s name in another [KS91]. 

d. Heterogeneity of Presentation1 
Heterogeneity of presentation includes domain mismatch problems, the 

use of different units of measure, differences in precision, disparate data types, and 

different field lengths or variations in integrity constraints.  Domain mismatch problems 

occur when the same concept is characterized differently in two separate systems, such as 

geographic position measured in latitude and longitude on one system and Military Grid 

Reference System (MGRS) on another [HM99].  Systems may also use different units of 

measure when quantifying the same object, i.e., yards in one system versus meters in 

another for distance measurement.  Differences in precision may also occur between 

systems, i.e., one system might measure range to a target in hundreds of yards (more 

precise) versus another system measuring the same quantity in thousands of yards (less 
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precise) [HM99].  Systems may express the same characteristic using disparate data 

types: one system represents a telephone number as an integer while another 

characterizes it as a character string.  Systems may also use different field lengths for 

defining the same entity [Wie93]: one system may provide a twenty-character description 

of a weapon’s capability while another only allows ten characters for the same 

information.  Similarly, two systems might place different integrity constraints on the 

same value [KS91].  For instance, one system might allow a value for missile 

effectiveness in the range of one to twenty nautical miles whereas a different system 

might allow effective range values up to thirty nautical miles. 

e. Heterogeneity of Meaning 
Heterogeneity of meaning results from the imprecise nature of natural 

language for characterizing a real-world entity.  The use of homonyms, synonyms, and 

abbreviations for specifying real-world entity features contribute to this type of 

difference.  Homonyms refer to the use of the same word to convey different meanings, 

such as the use of the word tank to describe both a tracked combat vehicle and a 

container for liquid or gaseous material storage [HL96, KM98, Wie93].  Synonyms refer 

to the use of different words to describe the same real-world entity or characteristic.  For 

example, both location and position can be used to refer to the geographic coordinates of 

a military unit.  The use of abbreviations for depicting real-world entities represents a 

special case of the use of synonyms where different abbreviations can be used to 

represent the same entity, such as the use of POSIT, PSIT, or POS to refer to the position 

of an entity [HM99, KS91]. 

f. Heterogeneity of Scope 
Heterogeneity of Scope results from differences in the information used to 

model a real-world entity.  These differences can arise from different perspectives on 

what attributes a given application needs to capture about the real-world entity being 

modeled [Wie93, HL96].  For example, a logistics management system might include 

attributes fuelCapacity and ammunitionStatus for a main battle tank, whereas a command 

and control system would include attributes weaponRange and defensiveArmor in its tank 

model. 
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g. Heterogeneity of Level of Abstraction 
Heterogeneity of level of abstraction results from differences in the level 

and degree of aggregation of atomic data elements.  For example, one system may store 

sales information as a monthly total while another system aggregates the same basic data 

as a yearly sum [Wie93, HL96]. 

h. Heterogeneity of Temporal Validity 
Finally, modeling differences may arise from differences in the time used 

by two models to observe or record the state of a real-world entity.  A difference in the 

length of time data remains valid is another source of heterogeneity of temporal validity.  

For example, two companies may record their accounting information according to 

different fiscal years.  These differences in temporal validity are particularly an issue with 

military C4I systems [HL96, Wie93]. 

B. CRITERIA FOR EVALUATING INTEROPERABILITY APPROACHES 
The first criterion for evaluating alternative interoperability approaches is a 

determination of the types of heterogeneity that may be resolved using the approach.  In 

addition, I have selected seven other criteria for comparing existing interoperability 

approaches.  These criteria are listed below and discussed in the following paragraphs. 

• Types of heterogeneity addressed 
• Capability for application of computer aid for model correlation 
• Required knowledge of remote operations 
• Required modification to existing system 
• Translation methodology 
• Capability for application of computer aid for translation development 
• Support for federation extensibility 
• Information exchange versus joint task execution 

 
1. Types of Heterogeneity Addressed 
Section II.A.2 suggested a classification of the modeling differences that must be 

resolved between systems in order for them to interoperate.  Evaluations of the types of 

heterogeneity addressed as well as the degree to which they are successful at resolving 

these differences are central to any evaluation of candidate interoperability approaches.  

For each candidate interoperability approach, an assessment is provided indicating 

 15



whether the approach provides a method for resolving each of the eight types of 

heterogeneity completely, partially, or not at all. 

2. Capability for Application of Computer Aid for Model Correlation 
Creating a federation of autonomously developed heterogeneous systems involves 

many real-world entities and potentially numerous models of those entities by the various 

systems.  Manual correlation of different models of each real-world entity could be a 

difficult, time-consuming chore.  In integrating database systems, the data correlation 

problem poses one of the biggest challenges, with the time required to match 

corresponding elements between databases requiring as much as four hours per element 

when done manually [LC00].  The correlation problem is no less formidable in the 

context of attempting to find correspondences among attributes and operations from 

different systems’ models.  Therefore, as the number of systems being integrated, and 

correspondingly, the number of modeled entities increases, application of computer aid to 

the correlation process is warranted.  An evaluation of the candidate interoperability 

approaches is made indicating whether they provide assistance for correlating different 

models of the real-world entities involved in system interoperation.  Where provided, the 

approach is evaluated to determine the extent of assistance given. 

3. Required Knowledge of Remote Operations 
The ability for one system to invoke operations implemented on another system is 

one of the tenets for declaring that the two systems are interoperable.  In some 

interoperability approaches a designer must have prior knowledge of the operations 

available on a remote system (and possibly modify the calling system to comply with a 

server’s interface) in order to take advantage of their functionality.  Other approaches 

enable the designer to invoke a server’s methods using the client’s representation for the 

method name and parameters.  Such late binding enables independently developed 

systems to take advantage of operations not known at development time.  The candidate 

interoperability approaches are evaluated to determine whether they enable remote 

method calls using a client’s representation for a method’s name and parameters or 

whether they require the system designer to satisfy the representation specified by the 

server’s interface for these parameters. 
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4. Required Modification to Existing System 
A significant impetus for addressing system interoperability comes from attempts 

to interconnect independently developed systems that were never intended to 

interoperate.  Typically such existing systems were developed without any of the 

constructs normally included when forward-fitting a system to support interoperability.  

Any modification to existing systems to enable them to interoperate is costly and time-

consuming.  Therefore, methodologies that will enable systems to interoperate without 

requiring modification to existing software are highly desirable.  An evaluation of the 

candidate interoperability approaches is made to determine if the approach can be applied 

to existing systems without requiring their modification or if approach compliance must 

be included in initial system design and development. 

5. Translation Methodology 
Early interoperability attempts involved the creation of custom point-to-point 

interfaces between systems.  This pair-wise approach to resolving representational 

differences between systems potentially requires n(n-1) translations for a federation of n 

systems.  Employing a platform-independent intermediate representation during a two-

step conversion requires 2(n) translations, which is a significant improvement over the 

pair-wise approach when n is greater than 3.  Candidate approaches are evaluated to 

determine if translations are defined in terms of a direct source-to-destination conversion 

or whether a two-step process utilizing an intermediate representation is employed. 

6. Capability for Application of Computer Aid for Translation 
Development 

Much of the work in creating translations for resolving modeling differences is 

repetitive, error prone, and can benefit from computer aid.  Two opportunities for 

computer aid that immediately come to mind are: 1) assistance in generating translations 

between corresponding models, and 2) assistance in reusing commonly used translations.  

Considering the mundane and detailed nature of such translations, computer aid is 

warranted, particularly when integrating a large number of systems.  An evaluation is 

made of candidate approaches to determine their capabilities for providing computer 

assistance in these or other areas of translation definition. 
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7. Support for Federation Extensibility 
Extensibility of a programming language refers to the capability to enrich the 

language by adding new features or modifying existing ones [RRH00].  A program or 

design is considered extensible if enhancements can be made to an existing component or 

data structure without adversely impacting components or applications dependent on the 

original entity.  Similarly, a federation of interoperable systems is considered extensible 

if additional systems can be added to the federation and changes can be made to the 

information and operations exchanged among systems without adversely affecting 

interoperation of the original system federation.  An approach that supports construction 

of an extensible system federation would enable the federation to be implemented in an 

incremental fashion, using a previously defined version as a baseline for extension vice 

creating a new federation each time the composition of information or operations 

exchanged among systems changes.  Such extensibility provides the foundation for 

federation reuse, enabling previously defined artifacts to be reused in future 

interoperability contexts. 

An interoperability approach that supports construction of an extensible system 

federation is highly desirable in order to enable incremental development and reuse of 

federation artifacts.  Candidate interoperability approaches are compared to determine the 

level of support provided for creating an extensible system federation.  An approach is 

considered to provide full support for federation extensibility if it enables both the 

addition of new systems to the federation and modification to existing information and 

operations shared among systems without impacting the interoperation of the original 

systems in the federation.  Candidate approaches satisfying only one of the above criteria 

are considered to provide partial extensibility support while approaches satisfying neither 

of these criteria are considered to provide no extensibility support. 

8. Information Exchange Versus Joint Task Execution 
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Pitoura defines interoperability as the capability of systems to exchange 

information and to jointly execute tasks [Pit97].  Full interoperability allows systems to 

take advantage of functionalities and services that would otherwise not be available or 

would have to be implemented.  Candidate approaches are evaluated to determine 

whether they provide the capability for resolving system heterogeneities only during 



information exchange or if their methodologies can also be applied for achieving joint 

task execution among systems. 

C. APPROACHES FOR ACHIEVING INTEROPERABILITY AMONG 
HETEROGENEOUS SYSTEMS 

1. Common Object Request Broker Architecture (CORBA) 

a. CORBA Overview 
The Object Management Group (OMG) is “an open membership, not-for-

profit consortium that produces and maintains computer industry specifications for 

interoperable enterprise applications” [OMG01].  The OMG Charter includes the require-

ment to “provide a common architectural framework for object-oriented applications 

based on widely available interface specifications [Ros98, p.12].”  The OMG achieves its 

goals in this area with the establishment of the Object Management Architecture (OMA) 

of which the Common Object Request Broker Architecture (CORBA) is a part.  The 

OMA is a set of standards that provides a common architectural framework on which 

applications are built.  The OMA, depicted in Figure II-1, consists of: 

• An Object Request Broker (ORB) function 
• Object services (known as CORBAservices) 
• Common facilities (known as CORBAfacilities) 
• Domain interfaces 
• Application objects  [Pop98] 

 
CORBA serves to implement the ORB function specified as part of the OMA. 
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Figure II-1. OMG’s Object Management Architecture (From [Pop98]) 



CORBA provides capabilities in three areas to support interoperability:  

1) it provides a standard mechanism for defining the interfaces between components; 2) it 

specifies a number of standard services such as directory and naming services, persistent 

object services, and transaction services that are available to all CORBA compliant 

applications; and 3) it provides the mechanisms to allow application components or 

separate applications to communicate with each other.  These capabilities are provided in 

a platform independent and language independent fashion. 

• Platform independence:  CORBA objects can be used on any platform for which 
there is a CORBA ORB implementation. 

• Language independence:  CORBA objects can be implemented in a number of 
programming languages; CORBA objects don’t need to know in which language 
other CORBA objects are implemented in order to be able to communicate.  
[Ros98] 
 

The initial CORBA standard was released in 1990 as CORBA 1.0.  The 

CORBA standard continues to evolve, with the latest version, CORBA 2.6, released in 

December 2001 [CORBA01]. 

b. CORBA Architecture Overview 
As it’s name implies, CORBA is an object-oriented architecture.  This 

means that CORBA utilizes features from the Object-Oriented Analysis and Design 

(OOAD) paradigm, such as interface inheritance and polymorphism, to achieve the goals 

specified in the OMA.  This does not mean that CORBA is limited for use with object-

oriented systems.  In fact, the CORBA architecture provides components required for 

achieving interoperability among both object-oriented and non-object-oriented systems.  

The CORBA architecture utilizes the following components in achieving this goal:  1) an 

Object Request Broker (ORB), 2) an Interface Definition Language (IDL), 3) the 

CORBA Communications Model, 4) the CORBA Object Model, 5) Clients and Servers, 

and 6) CORBAservices and CORBAfacilities.  

(1) Object Request Broker (ORB).  An ORB is a software 

component whose purpose is to facilitate communications between objects.  When an 

application component wants to use a service provided by another component, it must 

first obtain a reference for the object providing that service.  The ORB provides this 

function by resolving requests for object references, thereby enabling application 
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components to establish connectivity with each other.  As part of this capability the ORB 

provides the functionality for locating a remote object, given an object reference, and for 

the marshaling of parameters and return values to and from remote method invocations.  

The CORBA ORB defines the standard for implementing the OMA ORB capability. 

(2) Interface Definition Language (IDL).  One of the key 

contributors toward achieving interoperability between both object-oriented and non-

object-oriented components is the OMG’s Interface Definition Language (IDL).  IDL is 

used to specify the interface between CORBA objects.  IDL consists of both a language 

for specifying an object’s interface as well as a translator for mapping the interface 

specification to the language and system-specific implementation of that interface.  As 

implied, IDL is used to define the interface only; implementation of the interface is done 

in some other language.  Because interfaces defined in IDL can be mapped to virtually 

any programming language and IDL serves as the common vernacular that all 

applications and components understand, CORBA can be utilized to connect applications 

and components implemented in a variety of languages. 

(3) CORBA Communications Model.  In the CORBA 

Communications Model, communication between objects takes place between a client 

and a server.  A client is an application that uses the services of a CORBA object, i.e. an 

application that invokes a method or methods on other objects.  Conversely, a server is an 

application that creates CORBA objects and makes the services provided by those objects 

available to other applications.  The CORBA Communications Model is based on the use 

of object references (more precisely Interoperable Object References (IORs)) for 

identifying objects whose services another component might require.  When a component 

of an application wants to access a CORBA object it must first obtain an IOR for that 

object.  Once an IOR is obtained for the object providing the desired service, actual 

communications between a client and a server are accomplished using a General Inter-

ORB Protocol (GIOP) compliant protocol.  GIOP specifies a standard for communication 

between various CORBA ORBs and components.  GIOP provides a general specification 

for inter-ORB communication; specific protocols such as the Internet Inter-ORB Protocol 
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(IIOP) for TCP/IP networks provide network specific implementations of the GIOP 

specification. 

(4) CORBA Object Model.  In addition to the communications 

model that specifies how communications between objects occur, CORBA features an 

object model that describes how objects are represented in the system.  Because CORBA 

was designed for distributed systems use, its object model possesses several 

characteristics tailored for this domain.  The first characteristic of CORBA’s object 

model is its semitransparent support for object distribution.  Thanks to the use of client 

stubs, a remote method call looks exactly like a local method call.  Thus, object location 

is transparent to the application that invokes one of the object’s methods.  A second 

characteristic of CORBA’s object model is that visibility to objects is provided only 

through passing of references to those objects vice passing the object by value.  This 

methodology grants visibility of an object to another process while retaining ownership 

of that object by the process in which it is defined.  As a result, execution of the object 

methods takes place within the memory and process space of the owning process.  

As previously mentioned, communication between objects is 

accomplished through the use of an ORB.  In achieving its objectives the ORB provides a 

number of functions ranging from user authentication, to object activation, to object 

persistence.  Access to these functions is provided to a CORBA object by means of a 

Basic Object Adapter (BOA).  Thus, the BOA provides a common set of methods by 

which an application can access ORB functionality to accomplish inter-object 

communication.  

(5) CORBA Clients and Servers.  As mentioned previously, 

communication between objects in CORBA takes place between a client and a server.  To 

facilitate this communication and to achieve interoperability between clients and servers 

implemented in a variety of programming languages, CORBA presents the concept of 

client stubs and server skeletons to connect a language independent IDL interface 

specification to the language-specific code that implements the interface.  A client stub is 

a small piece of code that allows a client component to access a server component.  
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Correspondingly, a server skeleton is a piece of code that allows a server to accept access 

requests from a client. 

The client stub provides a dummy implementation for each method 

in the interface, thus making a particular CORBA server interface available to the client.  

The client stub methods are used to marshal and unmarshal parameters for 

communication with the ORB.  On the other side of the interoperation, the server 

skeleton provides the framework on which the implementation code for a particular 

interface is built.  For each method of an interface, the IDL compiler generates an empty 

method in the server skeleton with the developer providing the implementation for the 

server skeleton methods. 

(6) CORBAservices and CORBAfacilities.  CORBAservices 

and CORBAfacilities provide a set of standardized capabilities for use by all applications.  

These capabilities include event management, licensing, object persistence, naming, 

security, transactions, user interface management, and data interchange, etc.  These 

capabilities supplement the basic use of IDL for creating component interfaces for a 

specified application service, and then for developing clients to exploit the provided 

services.  In maintaining consistency with the overall CORBA architecture, interface to 

these services and facilities is specified using IDL.  Implementation of the 

CORBAservices and CORBAfacilities interfaces are vendor dependent; all products may 

not include a full implementation of these capabilities.  [Pop98, Ros98] 

c. Evaluation of Interoperability Approach 
In this section, I evaluate CORBA against the factors defined in 

Section II.B for comparing alternative approaches for achieving interoperability among 

heterogeneous systems.  The results of this comparison are summarized in Table II-1 and 

discussed as follows. 
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Table II-1. Evaluation of CORBA Support for Resolution of Modeling Differences 

Evaluation Criteria CORBA 
Types of Heterogeneity 

Addressed 
Hardware and Operating System; 
Organizational Models; 
Presentation (Partial) 

Capability for Application 
of Computer-Aid for 
Model Correlation? 

Partial.  CORBA Naming and Trader Services enable 
name or service-based object discovery; however 
no assistance provided in correlating different 
method parameter representations. 

Knowledge of Remote 
System Methods Required? 

Yes.  Server object must be advertised and exposed 
through IDL interface; server's object reference 
must be known to client; may use naming service 
or trader service to locate server application. 

Modification to Existing 
System Required? 

Yes.  Must support CORBA IDL; requires client stub 
and server skeleton written in IDL. 

Translation Methodology? Two-step (Hardware and operating system 
heterogeneity resolution only).  ORB translates 
method parameters to over-the-wire format for 
transmission between client and server 
applications; however, over-the-wire format not 
designed for resolving semantic heterogeneity 

Capability for Application 
of Computer-Aid for 

Translation Development? 

Partial.  Minimal assistance provided for resolving 
low-level hardware and operating system hetero-
geneities using marshal and unmarshal process. 

Support for Federation 
Extensibility 

Partial support.  Lack of practical means for extending 
attribute or operation parameter types under 
OMG IDL limits support for federation 
modification. 

Information Exchange vs 
Joint Task Execution? 

Both information exchange and joint task execution. 

 
(1) Types of Heterogeneity Addressed. 

Heterogeneity of Hardware and Operating Systems.  One of the 

responsibilities of CORBA’s Object Request Broker (ORB) is to provide a server method 

the input parameters required for its computations and to return the result of this 

operation to the calling client.  Parameters are defined using any of OMG IDL’s primitive 

or constructed types.  Primitive types include a number of expected character, number, 

and logic types.  Constructed types enable the creation of user-defined types by 

combining other types.  Constructed types include an enumerated type, structure type, 
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union type, and interface type.  CORBA uses a marshaling-unmarshaling process to 

transmit required parameters and return values between a client and server application.  

The marshaling process converts the parameter from the format used on a client to a 

platform-independent over-the-wire format for transmission between components.  The 

unmarshaling process converts this over-the-wire format to one that is expected by the 

server.  A similar process is utilized when returning a result to the client application.  

Differences in hardware platform and operating system between a client and server 

application are resolved using this marshaling-unmarshaling process by converting 

between system-specific and platform-independent formats. 

Heterogeneity of Organizational Models.  Although CORBA 

defines an object-oriented architecture, use of OMG IDL for specifying client and server 

interfaces enables CORBA to facilitate interoperability between both object-oriented and 

non-object-oriented architectures.  IDL client stubs can be used to invoke a server’s 

methods from either object-oriented or non-object-oriented applications.  Similarly, IDL 

server skeletons enable server methods to be implemented using either object-oriented or 

procedural languages. 

Heterogeneity of Structure, Scope, Level of Abstraction, Meaning 

and Temporal Validity.  Communication between objects in CORBA is accomplished by 

one object, a client, invoking a method on another object, the server, which then performs 

the requested operation on a set of parameter values provided by the client and (possibly) 

returns a result of the operation to the calling client.  The information is provided as 

parameters for the remote method invocation must conform to that which is expected by 

the server method.  Both client and server must agree on the number and types of 

parameters used to pass information from a client to a server.  The client must resolve 

any differences in structure, scope, level of abstraction, meaning, and temporal validity 

between its application’s objects and the corresponding server object prior to invoking 

the server method.  CORBA relies on the system designer to resolve these types of 

heterogeneity in client and server models. 

Heterogeneity of Presentation.  Under CORBA the client must 

resolve any differences in presentation between its application’s objects and the 
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corresponding server object prior to invoking the server method.  OMG’s Interface 

Definition Language (IDL) does provide some help in resolving differences in 

presentation.  By defining a set of primitive and constructed types and a mapping from 

each of these IDL types to the programming language specific types used in applications 

implementing a CORBA interface, IDL provides the means for eliminating problems 

resulting from the use of disparate data types.  However, resolution of higher level 

differences such as domain mismatch problems, different units of measure, differences in 

precision, and different field lengths or variations in integrity constraints are not provided 

by CORBA and must therefore be addressed by the system designer using other means. 

(2) Capability for Application of Computer Aid for Model 

Correlation.  CORBA requires that method parameters be provided in the representation 

expected by the server object.  It is the responsibility of the system designer to provide 

parameters that agree in scope, level of abstraction, meaning, presentation, and temporal 

validity with the information expected by the server.  CORBA does not provide any 

assistance in locating client entities that might correspond to a required server parameter 

but differ in one of the above aspects.  Similarly, CORBA does not provide any 

assistance in locating server methods that might utilize a specified client entity as a 

parameter. 

(3) Required Knowledge of Remote Operations.  Because 

information exchange and joint task execution are accomplished in a CORBA application 

by client invocation of server method(s), knowledge of the objects and methods available 

on the server is required.  CORBA’s Naming and Trader Services can provide assistance 

in locating a specified server application in which a desired object and its methods are 

defined; however the client must have prior knowledge of the existence and name used 

for the desired methods to be invoked. 

(4) Required Modification to Existing System.  A server 

application’s methods are invoked by a call from a client system.  This call is written 

using IDL and conforms to the skeleton created for the server method.  If the client 

application does not use IDL to invoke a server’s methods, then it must be modified to 

make it CORBA compliant. 
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Implementation of the server’s methods can be done using any 

language or organizational model as long as the implementation satisfies the interface 

specified by the server’s IDL skeleton.  The server skeleton can be implemented as a 

wrapper surrounding a legacy method implementation, thereby eliminating the need for 

modification of existing server software.  However, modification of the client system is 

required in order to add an IDL client stub used for server method invocation if it is not 

already CORBA compliant. 

(5) Translation Methodology.  In the CORBA communications 

model, communications between applications is facilitated by the use of an Object 

Request Broker (ORB).  The ORB uses a marshaling-unmarshaling process to translate 

method parameters from the source or destination representation to an intermediate over-

the-wire format for transmission across the network between client and server 

applications.  Thus communications between components is platform independent.  This 

intermediate representation is primarily utilized to resolve differences caused by 

hardware and operating systems, such as differences in word size or byte ordering.  

However, resolution of other differences such as domain mismatch problems, use of 

different units of measure, differences in precision, and different field lengths or 

variations in integrity constraints, are not provided by the over-the-wire format.  The 

translation methodology for resolving such heterogeneities is not specified by the 

CORBA standard. 

(6) Capability for Application of Computer Aid for Translation 

Development.  Once an application component has obtained a reference to an object 

whose services it wants to use, it can invoke methods on that object.  Generally, those 

methods take one or more parameters as input and return other parameters as output.  As 

mentioned previously, CORBA’s Object Request Broker (ORB) is responsible for 

receiving the input parameters from the component that is calling the method and for 

translating these parameters into a format that can be transmitted to the called object, via 

a process termed marshaling.  Then, on the called object side, the ORB unmarshals these 

parameters from the transmitted format to a format that the called component 
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understands.  Any heterogeneity in these parameters between the two systems must be 

resolved in order for the two systems to interoperate.   

For the types of heterogeneity addressed by CORBA, this 

marshaling and unmarshaling process is handled completely by the ORB, entirely 

transparent to both the client and the server.  Thus, resolution of hardware and operating 

system differences, as well as other low-level modeling differences, is handled 

automatically by the ORB in concert with the use of IDL to specify the interface between 

client and server systems.  However, other modeling differences are not addressed by 

CORBA and are the responsibility of the system designer to resolve.  No assistance is 

provided by CORBA in constructing these translations. 

(7) Support for Federation Extensibility.  CORBA effects joint 

task execution and information exchange among components of a system federation by 

providing the capability for one system, acting as a client, to invoke methods of another 

system, performing as the server.  Identification of the methods exposed by a server and 

invoked by a client is provided by an interface defined using OMG IDL.  Adding a new 

system to a federation can be accomplished by defining new interfaces for the services 

provided by that system.  Existing systems would continue to use the existing interfaces 

to share tasks and exchange information among themselves.  Existing systems would 

invoke methods from the newly added interfaces when desiring to interact with a new 

system.  Conversely, a new system could interact with an existing system by invoking the 

method calls provided by the client stubs generated for the existing system interfaces. 

Modification to existing interfaces without affecting those already 

in place is not as straightforward.  Interface modification can be accomplished through 

interface extension using inheritance in OMG IDL, using the original interface to govern 

the original interaction between systems and the extended interface for the modified 

interaction.  However, OMG IDL lacks practical versioning support for use in modifying 

types used in an interface definition.  So although you can modify an interface through 

extension by including additional attributes or methods, OMG IDL provides no practical 

means for extending attribute or operation parameter types [SV02]. 
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Although OMG IDL supports a versioning pragma that enables 

one to include a version number with a type, it does not solve the type modification 

problem.  First, no version information for data types is passed between applications 

during method calls or replies, so the application is unable to determine what version of a 

type it is sending or receiving.  Second, the CORBA specification does not define how 

the version number should be modified when a data type changes and fails to define rules 

for determining compatibility between different versions.  This is exacerbated by failure 

of the CORBA standard interoperability protocol, the General Inter-ORB Protocol 

(GIOP), to include type information about the attributes and method parameters 

exchanged among components.  This prevents applications from receiving types that they 

are not expecting or that they do not understand.  [SV02] 

As an alternative to the use of pragma to provide versioning 

support for type extension, one could instead define a new type that reflects the changed 

information while leaving the original type unchanged.  However, modifying the 

interface to include both the old type and the new type definitions would require 

recompilation and redeployment of any applications that utilize the interface.  Interface 

recompilation and redeployment could be avoided by the use of inheritance, defining an 

interface containing the new type definition as an extension to the interface containing 

the original type definition.  However, because CORBA does not allow operation 

overloading, operations defined on the type in the new interface must be renamed to 

prevent naming collisions with the interface being extended.  As additional type 

modifications are required, new interfaces with all-new operations to handle the new type 

must be derived.  This approach quickly becomes unwieldy as the number of type 

modifications grows.  [SV02] 

Other approaches to versioning under CORBA have similar 

limitations.  As a result, CORBA is considered to provide partial support for federation 

extensibility. 

(8) Information Exchange versus Joint Task Execution.  

CORBA addresses both aspects of interoperability- information exchange and joint task 

execution.  As discussed in Section II.C.1.b, CORBA’s employment of IDL, together 
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with its communications and object model, enables one application to invoke methods 

defined for another.  In addition to enabling joint execution of methods between two 

applications, this mechanism can also be utilized to exchange information between these 

applications.  Information exchange between a client and server can be accomplished by 

the client invoking a getItemFromSender method on the server with the client supplying 

the values being transmitted to the sender as parameters to the method call.   

2. COM, DCOM, COM+ 
Introduced by Microsoft in 1993, the Component Object Model (COM) is a 

software architecture that enables applications and systems to be built from binary 

components supplied by different software vendors.  COM and its successor architectures 

Distributed COM (DCOM) and COM+ are competing technologies to the Object 

Management Group’s (OMG’s) Common Object Request Broker Architecture (CORBA).  

COM and its successors provide the fundamental object creation and management 

facilities required to enable components to interact. 

COM’s original function was to provide a general-purpose mechanism for 

component integration on Windows platforms.  DCOM added support for distributed 

components when introduced on Windows NT in 1996 and Windows 95 in 1997.  COM+ 

provided a unification of COM, DCOM and Microsoft Transaction Server when 

introduced with Windows 2000 in the spring of 2000. 

a. Component Object Model (COM) 
COM defines a “language-independent, object-oriented, extensible, binary 

interoperability standard that allows software components to communicate with each 

other [Kol00, p. 6].”  Based on a client-server model, COM enables clients to invoke 

services provided by COM-compliant components, irrespective of the programming 

language the components are written in. 

A key feature of COM is that it provides a standard that allows binary 

software components, supplied by different software vendors, to connect and 

communicate with each other.  This contrasts with CORBA’s approach of enabling 

interoperability at the source code level.  Some of the key components of the COM 

standard which support interoperability among binary software components include: 
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• A provision for providing access to a software component via a strongly-typed 
grouping of functions termed an interface. 

• A client-server based approach that makes the location of a function being 
requested by an application transparent to the calling client. 

• An interface definition language for specifying and describing interfaces and 
objects. 

• A binary standard for function calling between components. 
• A base interface providing: 

− A way for components to dynamically discover the interfaces implemented by 
other components. 

− Reference counting to allow components to track their own lifetime and delete 
themselves when appropriate. 

• A mechanism for uniquely identifying components and their interfaces. 
• A means for object and interface reusability. 
• A mechanism for identifying components and interfaces that facilitates system 

extension. [Kol00] 
 

In COM, an interface is a collection of semantically related operations, 

called methods, which express a single functionality.  An interface provides the binary 

standard through which clients and component objects communicate.  These methods are 

defined in a piece of compiled code, called a component object (or just object) in COM, 

which provides some service to the rest of the system.  A generalization of one or more 

interfaces that express related behavior is termed a class.  Access to an object’s methods 

is provided by means of an interface pointer that references the interface and is further 

described below.  An interface is not a component object.  A component object 

implements an interface and a component object must be instantiated in order for an 

interface to exist.  Component objects can implement multiple interfaces.  Interfaces are 

immutable, meaning that once defined, an interface cannot be changed.  If access to 

additional methods offered by an object is desired, then a new interface must be defined. 

One or more COM classes are packaged into a server.  A server can create 

object instances of multiple classes, where each COM object runs inside of the server.  

Servers can be either in-process servers, where they are loaded into the same address 

space as the client, or out-of-process servers that run in another process on the same 

machine as the client (local) or in another process on a remote machine (remote).  

Remote servers are accessed using the distributed successor to COM (DCOM) that will 

be addressed in Section II.C.2.b.  A client is any piece of code that makes use of another 
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object’s services by calling methods of that object’s interfaces.  An important aspect of 

COM is that client applications do not need to know how server objects are packaged or 

whether the server is in-process or out-of-process.  The client uses the same method to 

access the server in either case. 

All COM objects and their interfaces are specified using the Microsoft 

Interface Definition Language (MIDL).  MIDL is an object-oriented extension of the 

Interface Definition Language (IDL) defined by the Open Software Foundation (OSF) for 

the Distributed Computing Environment (DCE).  OSF IDL was originally developed for 

describing the interfaces, operations, and attributes for remote procedure calls (RPC) in 

traditional client-server applications.  MIDL enables programming language independent 

specification of a component’s interface.   

COM’s binary standard specifies the way that server functions must be 

called.  A binary structure for the interface between a client and a server is defined that 

enables clients to utilize a server’s services regardless of differences in the 

implementation environments of the client and server programs and how objects and their 

interfaces look in memory.  The binary standard specifies that any interface must follow a 

standard memory layout.  By calling the interface, a client program can obtain a pointer 

to a table that contains an entry for each function available via that interface.  This table, 

called a virtual function table (vtable), is an array of pointers to the object’s 

implementations of the interface methods.  A client accesses the vtable through an 

interface pointer.  Therefore, client access to a server’s method implementation is by 

means of double indirection- the client uses an interface pointer to access the vtable that 

in turn contains the pointer(s) to the server method implementation(s).  Figure II-2 

illustrates the binary structure of a COM object and the double indirection used to access 

a server’s method implementations. 

COM defines a base interface, IUnknown, from which all other interfaces 

are derived.  IUnknown includes methods QueryInterface, AddRef, and Release to 

provide essential functionality required by all interfaces.  QueryInterface enables a client 

to dynamically discover (at runtime) whether a component object supports a specified 

interface or not.  An application will request a pointer to the interface that implements a 
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desired function via a call to the QueryInterface method of a component.  QueryInterface 

will return the appropriate interface pointer and a success code if it supports that interface 

or an error value if it does not.  Methods AddRef and Release are used to implement a 

manual reference counting mechanism in COM that an object uses to control its own 

lifetime.  When a client accesses an object it uses AddRef to increase the reference 

counter for that object and Release to decrease the reference count when it is done with 

the object.  When the reference count is reduced to zero, the object knows that its services 

are no longer needed and it therefore can delete itself.  

 

 
Figure II-2. Binary Structure of a COM Object (From [Kol00]) 

 
COM uses a number of globally unique identifiers in order to ensure that 

COM components connect to the correct component, object, or interface.  Each interface 

is assigned a globally unique identifier (GUID) called the interface ID (IID) at 

development time.  In addition, each COM class is assigned a class ID (CLSID) for the 

same purpose.  Developers create their own GUIDs when they develop component 

objects and custom interfaces through the use of the CoCreateGUID function included as 

part of the COM Application Programming Interface (API).  These GUIDs are embedded 

in the component binary and are used to dynamically ensure that no incorrect connections 

are made between components at bind time. 
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One of the primary advantages of any object model is that objects and 

other components can be reused and extended for use in other applications.  COM 

enables reuse of a component object’s interface through the use of interface inheritance.  

COM allows only single interface inheritance, vice multiple interface inheritance, and 



does not support selective inheritance where an interface could selectively choose the 

methods it wants to inherit from another interface.   

However, interface inheritance does not mean code reuse by inheritance, 

since no implementations are associated with an interface.  COM does provide two other 

reusability mechanisms for object-level reuse.  These mechanisms are 

containment/delegation and aggregation.  In containment/delegation, one object, the 

outer object, contains another object, the inner object, with the outer object acting as a 

client to the inner object.  In this way the outer object uses the inner object to implement 

some or possibly all of its functionality, thereby enabling the inner object to be reused by 

many other objects.  Aggregation, on the other hand, exposes the interfaces from the 

inner object as if they were implemented on the outer object itself.  Aggregation avoids 

the extra implementation overhead required by the outer object to delegate 

implementation of its external interfaces to a contained inner object. 

The ability to modify and extend the capability of a system is generally 

handled via its versioning mechanisms.  Versioning mechanisms allow you to add new 

features to a component, creating a new version in the process, without affecting existing 

clients of that component.  Versioning in COM is implemented using interfaces and 

IUnknown’s QueryInterface method. 

Updating a software module is usually done to add new functionality or to 

improve existing functionality.  In COM, since interfaces are immutable, new 

functionality is added to a component object by adding support for new interfaces.  Since 

the existing interfaces don't change, components that rely on those existing interfaces are 

not impacted by the addition of new interfaces.  Clients that know about the new 

functionality can use these newly created interfaces to access this functionality.  The 

client can use IUnknown’s QueryInterface method to evaluate the capabilities of a 

component object at runtime and when new features become available access those 

features through the newly created interface corresponding to those features.  The 

procedure for improving existing functionality is even simpler.  Since the syntax and 

semantics of an interface remain constant, the implementation of the interface can be 
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changed at any time, without affecting other developers’ components that rely on the 

interface.  [WK94] 

COM maintains a Component Object Library to facilitate client access to 

server methods.  When an application creates a component object, it adds the CLSID of 

the component object class to the Component Object Library.  The CLSID is used by the 

Component Object Library to locate the associated server code in the registration 

database.  COM then either launches the server code directly (if it is an executable) or 

loads the server code and creates an instance of the component object and returns a 

pointer to the requested interface back to the calling application (if it is a DLL).  In either 

case, the calling application will use the returned interface pointer to communicate with 

the newly created component object.  [WK94] 

b. Distributed Component Object Model (DCOM) 
The Distributed Component Object Model (DCOM) extends the 

Component Object Model (COM) to support communications among objects over a 

network.  Whereas COM was limited to communications between processes running on 

the same machine, DCOM extends that capability to other machines operating across a 

network.  DCOM uses the same methodology to communicate between networks that 

COM uses to facilitate inter-process communication on the same machine. 

As can be seen in Figure II-3, DCOM adds a communications mechanism 

between client and server objects as well as a layer of middleware to connect the client 

and server objects to the communications mechanism.  The communications mechanism 

is based on Microsoft’s Object Remote Procedure Call (ORPC) standard.  ORPC 

specifies how references to objects are represented, communicated, and maintained, and 

how calls to objects are made across the network.  As shown in Figure II-3, a client and a 

server are connected via an underlying RPC channel.  This RPC channel consists of 

either a local inter-process communication mechanism for client and server objects 

residing within the same machine, or a network protocol for client and the object residing 

on different machines. 
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Figure II-3. DCOM Overall Architecture (From [Kol00]) 

 
Whenever a client and a server are on different processes on the same 

machine, or on different machines, DCOM uses the concept of stub and proxy objects to 

support object location transparency.  The proxy object is a piece of middleware that sits 

between the client and the RPC channel and acts as a surrogate for the server object.  It is 

used to package the client’s method call parameters into a message buffer for 

transmission across the RPC channel.  The method call message is received on the server 

side by a stub object that unpacks the received packets and forwards the client request to 

the appropriate object implementation on the server.  If the component object being 

called is in-process, the call reaches the object directly using existing facilities provided 

by COM.  Figure II-4 illustrates MIDL’s use of proxy and stub constructs for achieving 

programming language transparency. 

The Service Control Manager (SCM) is an additional piece of middleware 

that is used to initiate the connection between a client and a server.  The SCM 

accomplishes this by keeping a database of class information based on registry data.  

Upon receipt of a client request, the local SCM looks up the desired method’s object class 

ID (CLSID) in its registry and then takes the appropriate actions to activate the remote 

server.  This is done by the local SCM contacting the SCM on the remote machine where 

the desired object resides.  The remote SCM locates and launches the server and returns 

an RPC connection between the client and server.  [DCOM96, Kol00] 
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Figure II-4. Use of MIDL Proxy and Stub Constructs for Achieving Programming 

Language Transparency (From [Kol00]) 

 
c. Component Object Model Plus (COM+) 
As mentioned previously, COM+ provides a unification of COM, DCOM 

and Microsoft Transaction Server capabilities.  While adding a number of new features 

and services, COM+’s primary contribution regarding data interoperability is in the 

automation of many of the resource management tasks that developers previously had to 

take care of.  Most notable of these tasks are:  

(1) Hiding reference counting from developers.  With COM 

and DCOM, developers were responsible for managing the lifetime of components using 

IUnknown's AddRef and Release methods.  With COM+, reference counting is handled 

automatically. 

(2) Largely hiding the Interface Definition Language (IDL) 

from developers.  Rather than having to define object interfaces in terms of Microsoft’s 

IDL (MIDL), COM+ enables developers to define these interfaces in terms of the 

programming language they are currently using.  This greatly simplifies interface 

development and potentially minimizes the amount of changes required to bring legacy 

code into COM+ compliance. 

(3) Provides a common set of types supported by all COM+ 

objects.  Differences in the data types supported by different programming languages are 

problematic when attempting to create an interoperable system from a number of 
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heterogeneous components.  COM+ provides a set of common types, shown in Figure 

II-5, by which components can agree for defining shared class data, method parameters, 

and return values.  [Kol00] 
 

 
Figure II-5. Data Types Supported by COM+ (From [Kir97]) 

 
While not directly related to achieving data interoperability, other 

enhancements added by COM+, such as transaction support, load balancing, object 

pooling, queued components, and advanced security features improve its capability for 

component based system development [Kol00]. 

d. Evaluation of Interoperability Approach 
In evaluating COM, DCOM, and COM+ against the criteria used to 

compare interoperability approaches, the three technologies are assessed as one as they 

represent the evolution of the same concept.  These technologies will be referred to 
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collectively as COM+, except when discussing capabilities related to a specific 

technology in the COM+ family evolution.  A summary of this assessment is contained in 

Table II-2 and discussed in the following paragraphs.  

 

Table II-2. Evaluation of COM, DCOM, and COM+ Support for Resolution of 
Modeling Differences 

Evaluation Criteria COM, DCOM, and COM+ 
Types of Heterogeneity 

Addressed 
Hardware and Operating System (partial); 
Organizational Models; 
Presentation (Partial) 

Capability for Application 
of Computer-Aid for 
Model Correlation? 

No. 

Knowledge of Remote 
System Methods Required? 

Yes.  Method name, and type and depiction of 
included parameters required. 

Modification to Existing 
System Required? 

Yes.  Minimal; MIDL not required by COM+, 
however use of client proxy still required. 

Translation Methodology? Not specified.  Marshal and unmarshal routines use 
standard transmission format; methodology for 
resolution of other types of heterogeneity not 
specified. 

Capability for Application 
of Computer-Aid for 

Translation Development? 

Partial.  Minimal assistance provided for resolving 
low-level hardware and operating system hetero-
geneities using marshal and unmarshal process. 

Support for Federation 
Extensibility 

Partial support.  Lack of practical means for extending 
attribute or operation parameter types under 
MIDL limits support for federation modification. 

Information Exchange vs. 
Joint Task Execution? 

Both information exchange and joint task execution. 

 
(1) Types of Heterogeneity Addressed.  

Heterogeneity of Hardware and Operating Systems.  The COM+ 

suite is considered partially successful at resolving differences in hardware and operating 

systems between components.  Use of the Microsoft Interface Definition Language 

(MIDL) to specify and describe all COM objects and their interfaces, together with 

definition of a common set of types supported by all COM+ objects, forms the core of the 

COM+ family’s solution for resolving hardware and operating system heterogeneity.  
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Coupling of the MIDL server method calls with their binary implementation through the 

use virtual function tables (vtables) serves to resolve differences in the implementation 

environment of the client and server programs.  Mechanisms for converting between 

system-specific type representations and the COM+ common type definition contributes 

further to the resolution of hardware and operating system differences.  However, 

resolution of hardware and operating system heterogeneity is only considered partially 

successful due to the fact that the COM+ family is primarily designed to be supported on 

Windows operating systems.  Microsoft has enlisted Software AG to provide 

COM/DCOM implementations on platforms other than Windows; however it is not 

certain that the full range of capabilities will be available for these other operating 

systems. 

Heterogeneity of Organizational Models.  The specification of a 

binary standard for defining the interface between a client and server enables the COM+ 

family to facilitate interoperability between both object-oriented and non-object-oriented 

architectures.  COM’s binary standard stipulates the mechanism for calling interface 

functions and serves to hide differences associated with heterogeneity of organizational 

models or programming languages used for function implementation.  Functions are 

accessed via an interface containing a pointer to a vtable that holds a pointer to the 

function implementation.  Thus, any programming language that can utilize a structure of 

pointers to explicitly or implicitly call functions can be used to write COM objects that 

can interoperate with other objects written to the binary standard regardless of 

organizational model used in the function implementation. 

Heterogeneity of Structure, Scope, Level of Abstraction, Meaning, 

and Temporal Validity.  Communication between objects in DCOM is accomplished by 

one object, a client, invoking a method on another object, the server, which then performs 

the requested operation on a set of parameter values provided by the client and (possibly) 

returns a result of the operation to the calling client.  Communication between clients and 

servers on different machines is supported by DCOM using the concept of client proxy 

and server stub objects.  The proxy and stub objects support the exchange of function 

calls, parameter values, and return values through a set of marshaling and unmarshaling 
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operations.  During marshaling, the client proxy converts function parameters from the 

client representation to a standard format for transmission across process boundaries.  

Unmarshaling performs the reverse operation, converting from the standard transmission 

format to the server representation.  Return values are marshaled by the server and 

unmarshaled by the client in the same manner.  In order to be able to marshal and 

unmarshal parameters correctly, the client needs to know the exact method signature, 

including all data types in the parameter list, required by the server.  Thus heterogeneity 

in structure, scope, level of abstraction, meaning, and temporal validity must be resolved 

by the client prior to invocation of the server method using MIDL.  COM/DCOM rely on 

the system designer to resolve these types of heterogeneity in client and server object 

representations. 

Heterogeneity of Presentation.  The resolution of differences in 

presentation between systems is largely unresolved by the COM+ family.  COM+ does 

addresses the problem regarding differences in data types used in different languages by 

defining a common set of types that are supported by all COM+ objects.  However, the 

issue is not completely resolved since the developer may need to provide some sort of 

mapping between its native type definitions and those used by COM+ in order to address 

problems such as differences in field length and floating-point number precision [Kir97].  

In addition, resolution of domain-mismatch problems, differences in units of measure, 

and variations in field length and integrity constraints are not addressed by COM+ and 

must therefore be handled by the system designer. 

(2) Capability for Application of Computer Aid for Model 

Correlation.  The COM+ family does not allow for differences in the modeling of method 

signatures between systems.  It requires that the method name and parameters be 

provided in the representation expected by a server object.  A client desiring to utilize a 

server’s methods must supply the method name and parameters expected by the server.  

If the scope, level of abstraction, meaning, presentation, or temporal validity of 

information expected by the server method invocation differs from that available on a 

client implementation, it is the responsibility of the system designer to perform any 

necessary conversions between the client and server models.  Since the COM+ family 
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does not allow modeling differences between method signatures, it does not provide any 

capability for correlation of client and server models of these signatures. 

(3) Required Knowledge of Remote Operations.  The COM+ 

family requires partial knowledge of the methods available for execution on a remote 

server.  Whereas details of the method name and the type and representation of required 

parameters are required by a client application in order to invoke a server method, actual 

location of the server method is not required.  Through its QueryInterface method in the 

IUnknown interface, COM provides a mechanism that enables clients to dynamically 

discover if a particular interface is supported by a component object.  However, the client 

must have prior knowledge of the existence and name used for the desired methods in 

order to utilize QueryInterface to locate the specified method. 

(4) Required Modification to Existing System.  COM’s binary 

standard enables objects written in different programming languages or to different 

organizational models to interoperate.  As long as the programming language can reduce 

language structures to the required binary structure, then compliant objects can be used to 

implement a server’s method calls without modification to the implementing object.  

However, client invocation of the desired server method is implemented using a method 

call written in MIDL.  Therefore, modification to the client application will be necessary 

if its method calls were not written to be COM compliant. 

COM+ eliminates the requirement for developers to implement 

object interfaces using MIDL, enabling them to specify the interface using whatever 

programming language is being used on the particular system.  This minimizes the 

required modification to the existing system, but does not completely eliminate it, as a 

client proxy in the client’s native language must still be provided. 

 
(5) Translation Methodology.  In DCOM, the marshaling and 

unmarshaling methods used by client proxy and server stub objects utilize a “flat” 

standard format for transmission across process boundaries.  Although this standard 

format can handle arbitrarily complex parameter and return values, including pointers to 

arrays and structures or other user defined types, it primarily serves to provide the means 

for managing differences in word size and byte order between systems.  Aside from 
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enabling resolution of these hardware differences between systems, this intermediate 

representation does not resolve other differences in presentation such as domain 

mismatch problems, different units of measure, differences in precision, and different 

field lengths or variations in integrity constraints.  Use of a point-to-point or two-step 

translation methodology for resolving such heterogeneities is not specified for the COM+ 

family. 

(6) Capability for Application of Computer Aid for Translation 

Development.  As discussed earlier, client proxy and server stub objects handle 

marshaling and unmarshaling of method parameters.  These objects automatically handle 

differences due to hardware heterogeneity, such as word size and byte ordering.  

However, other modeling differences are not addressed by COM and are the 

responsibility of the system designer to resolve.  The COM+ family does not provide any 

support for application of computer aid to the development of such translation 

requirements. 

(7) Support for Federation Extensibility.  Similar to CORBA, 

the COM+ family utilizes a client-server model for joint execution of tasks and exchange 

of information among components of a federation.  Identification of the methods exposed 

by a server and invoked by a client is likewise provided by an interface defining the 

system interoperation.  Adding a new system to the federation is accomplished by adding 

new interfaces defining the services provided by that system.  Existing interfaces are used 

to share tasks and exchange information among existing systems, while the new 

interfaces are utilized for interactions with the new system.  Existing systems 

functionality is invoked by the new system using the method calls provided by the client 

stubs generated for the existing system interfaces. 

Because COM interfaces are immutable, modification of the 

methods or data types used to define the information and tasks shared among systems is 

accomplished using interface inheritance.  Although COM interfaces are immutable, 

objects in COM can have more than one interface.  Adding new functionality to a 

component or modifying its existing capability is done by creating a new interface as an 

extension to the old one.  The new interface will include the unchanged methods from the 

 43



original as well as any new or modified methods and will receive a distinct interface 

identifier distinguishing it from the original.  Components relying on existing interfaces 

will continue to use them, whereas components requiring the new functionality will use 

the new interface. 

However, just as was seen in CORBA with OMG IDL, MIDL also 

does not allow operation overloading.  Therefore, support for type modification is 

similarly limited in COM+.  Operations defined on a modified type in the new interface 

must be renamed to prevent naming collisions with the interface being extended.  As 

additional type modifications are required, new interfaces with all new operations to 

handle the new type must be derived.  This approach quickly becomes unwieldy as the 

number of type modifications grows.  Therefore, the COM+ family is considered to only 

provide partial support for federation extensibility. 

(8) Information Exchange versus Joint Task Execution.   The 

COM+ family is primarily directed at enabling applications to share method invocation.  

However, as was seen with CORBA in Section II.C.1.c(7), information exchange can be 

accomplished by a client invoking a getItemFromSender method on the server, supplying 

the values to be transmitted to the sender as parameters to the method call. 

3. Java 2 Enterprise Edition (J2EE) 

a. J2EE Overview 
The Java 2 Enterprise Edition (J2EE) specification “defines a Java 

platform with features aimed at enterprise level computing environments” [Ber00, p. 

741].  It extends the Standard Edition specification primarily in the areas of security, 

deployment and interoperability.  In support of interoperability it provides a number of 

distributed computing protocols and APIs that can be used in creating a system 

federation.  Berg identifies four cornerstones for creating a distributed application: 

1. Data resources 
2. Naming and lookup of resources and services  
3. Remote invocation or messaging 
4. Transaction control [Ber00] 

 

J2EE provides a number of APIs to address requirements for distributed computing in 

each of these areas: 
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(1) Data resources.  Access to data is at the center of most 

multiuser computing applications.  Some type of database is used to store the state of the 

system for just about any large system application.  Standards such as SQL have provided 

software developers with the tools necessary to develop an application data model that is 

independent of the specific database used.  The Java Data Base Connectivity (JDBC) API 

defines a standard way of accessing a relational database from a Java application, 

regardless of where the application and database are located. [Ber00] 

The JDBC API wraps SQL and query responses in an object layer.  

It is based on Microsoft’s API for database drivers, Open Database Connectivity 

(ODBC); therefore there is a great deal of conformance between JDBC and ODBC.  In 

fact, Sun supplies a bridge that enables an application to access any data source that has 

an ODBC driver using the JDBC API. 

A recent industry move has been toward the use of the eXtensible 

Markup Language (XML) for capturing data used in applications.  J2EE provides three 

principal technologies for interacting with data stored using XML.  The Document Object 

Model (DOM) defines an object graph structure for representing XML documents 

[ABK00].  Java DOM implementations include functionality for traversing and 

manipulating the contents of an XML document using its graph structure form.  The 

Simple API for XML (SAX) is a set of Java packages that define an XML parser 

interface.  SAX enables applications to process the contents of an XML document 

[ABK00].  The Java API for XML Processing (JAXP) uses DOM, SAX, and XSLT to 

support XML document processing.  JAXP provides an implementation independent 

XML processing mechanism to parse and transform XML documents [JAXP02]. 

(2) Naming and lookup of resources and services.  The Java 

Naming and Directory Interface (JNDI) provides an API for accessing name and 

directory services.  In addition to providing a generic interface for accessing name and 

directory services in a uniform and product independent way, JNDI can also be used as 

an interface to object name services such as CORBA COS Naming. 

There are two primary ways to obtain an object using JNDI: 1) an 

application can ask for the object by name using the lookup() method; and 2) it can 
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search for the object based on attributes it possesses.  The lookup() method is intended 

primarily for name services, whereas attribute search is intended for retrieving directory 

services and other attribute and hierarchical types of name services.  JNDI also supports 

referrals.  A referral is a reply from a server directing a client to another server when it 

cannot locate an object or entry by itself but knows where it can be found.  Referrals can 

be followed automatically without a client application having to explicitly handle a 

returned referral. 

(3) Remote invocation or messaging.  J2EE provides the 

capability for remote method invocation or message exchange using one or more of the 

following technologies.  The capability for remote method invocation is provided by 

either Java Remote Method Invocation (RMI) or CORBA.  The capability for message 

exchange among applications is provided by Java Message Service (JMS). 

Remote Method Invocation (RMI).  Java’s built-in distributed 

object protocol, RMI, enables you to define objects that can be called remotely from 

other applications in a network.  This capability provides the foundation for joint task 

execution, and consequently information exchange, among systems in a federation.  RMI 

handles the details of packaging method parameters, sending them across a network to a 

remote object, unpackaging them at the destination, invoking the correct method using 

the passed parameters, and returning any method result back to the caller.  The process of 

packaging parameters for transmission to a remote object is termed “marshaling” under 

RMI, whereas the reverse procedure of unpackaging the parameters at the destination is 

termed “unmarshaling.” 

RMI provides an analogous capability to that presented by 

CORBA, but does not include all of CORBA’s power.  RMI uses a simpler, standardized 

model for establishing and managing connections between a client and server. 

RMI uses Java’s serialization API for packaging and unpackaging 

data during the marshaling and unmarshaling process, respectively.  Serialization is used 

to convert an object’s state into a machine-independent encoded form that is transmitted 

between applications or systems.  This encoded form is then reconstructed into an 
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equivalent object at the destination end.  Any machine-specific representational 

differences are resolved through the marshaling-unmarshaling process.   

How does RMI work?  First, the system designer will define a Java 

interface for services that are to be made available outside a defining application.  The 

resultant interface is then implemented with a server object class providing the required 

service functionality.  The server object class is then compiled using an RMI compiler 

that generates “stub” and “skeleton” classes that provide the required linkage between 

remote clients and the server object. 

When a client makes a remote call it is actually calling a method 

on the stub class that is deployed with the client code.  This stub serves as a proxy for the 

server object, marshaling the input parameters for the server object method call onto an 

RMI stream and sending them to the server using an RMI communications protocol.  At 

the server end, the skeleton code receives the RMI stream, unmarshals its contents, and 

invokes the method identified in the stream.  Any returned value provided by the invoked 

method is marshaled by the server skeleton and returned to the client stub as an RMI 

stream.  The client stub then unmarshals the returned value, creating a new Java object 

that is returned to the calling routing on the client side. 

CORBA.  Whereas Java applications can be made to interoperate 

with other Java applications using Java RMI, they can also interoperate with non-Java 

applications, and Java applications as well, using CORBA’s ORB.  As stated by Berg 

“Java and CORBA are extremely synergistic. … Java solves the problem of code 

distribution; CORBA solves the problem of intercommunication between distributed 

components. … combined, they provide an architecture for creating distributed 

applications that can deploy themselves and run in a cooperative fashion across a 

network” [Ber00, p.504]. 

RMI’s native protocol for communications between a client and 

server is called Java Remote Method Protocol (JRMP).  Alternatively, RMI can use 

CORBA IIOP to effect the marshaling and unmarshaling of method parameters between 

applications.  The use of the IIOP communication protocol from within RMI is often 

referred to as “RMI-over-IIOP.”  This capability enables you to utilize CORBA for 
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application interconnection using a programming model that mimics RMI.  Using IIOP 

from RMI also enables you to capitalize on some of the additional features provided by 

IIOP such as transaction context propagation. 

Java Message Service (JMS).  With Java RMI or CORBA, a 

designer can create a system federation capable of providing joint execution of tasks and 

information exchange among systems.  As an alternative to the remote invocation 

protocol provided by Java RMI, JMS provides a messaging service that can be used for 

information exchange among federation systems.  JMS provides both a point-to-point and 

publish-subscribe messaging model.  In the point-to-point model applications send and 

extract messages from named queues.  In the publish-subscribe model, applications 

publish messages to named “topic” channels and listen asynchronously for arriving 

messages on these topics. 

(4) Transaction control.  Integration of separate applications 

can be done using a messaging approach or a transactional approach.  In a messaging 

approach, the primary concern is with getting data from one system to another.  A 

transactional approach provides for the aggregation of separate operations, possibly 

across different data resources, into a single transaction that preserves atomicity, data 

integrity, data isolation, and recoverability upon failure. 

A transaction manager is “a component that coordinates the 

completion of transactions across multiple data resources” [Ber00, p.573].  The Java 

Transaction API (JTA) provides a standard Java interface that transaction managers can 

use to perform this coordination.  When used with a transaction manager, JTA provides a 

transaction approach to system integration.  This enables an application to create a single 

transaction for manipulating multiple data resources, eliminating the need for 

coordinating separate but related operations. 

In addition to providing the JTA for managing data resource 

transactions, J2EE also includes the Java Transaction Service (JTS), which defines a 

standard Java API for interaction with CORBA’s COS Transactions service (OTS).  

Many of the most flexible application servers are ORB-based and use OTS for their 
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transaction management implementations.  JTS enables the designer to include those 

servers in their transaction-based architecture. 

b. Evaluation of Interoperability Approach 
J2EE’s interoperability capabilities are evaluated using the criteria 

specified in Section II.B.  The results of the evaluation are summarized in Table II-3 and 

discussed in the following paragraphs. 

Table II-3. Evaluation of J2EE Support for Resolution of Modeling Differences 

Evaluation Criteria Java 2 Enterprise Edition (J2EE) 
Types of Heterogeneity 

Addressed 
Hardware and Operating System  (as long as there is a 

Java Virtual Machine implementation for the 
platform); 

Presentation  (Partial.  Since both client and server 
applications must be written in Java, common set 
of types available for parameter definition); 

Capability for Application 
of Computer-Aid for 
Model Correlation? 

No.  No assistance provided for correlating different 
models of the real-world entities used to capture 
an application’s problem environment. 

Knowledge of Remote 
System Methods Required? 

Yes.  Client must know server’s name or identifying 
attributes in order to acquire server object 
reference for remote method invocation. 

Modification to Existing 
System Required? 

Yes.  Both client and server applications must be 
written in Java. 

Translation Methodology? Two-step (Hardware and operating system 
heterogeneity resolution only).  Communication 
between objects done using Java Object 
Serialization; however, does not support 
semantic heterogeneity resolution. 

Capability for Application 
of Computer-Aid for 

Translation Development? 

Partial.  Outside of platform independence provided by 
Java Virtual Machine, no assistance provided in 
resolving other types of heterogeneity. 

Support for Federation 
Extensibility 

Full support provided for both federation extension 
and modification. 

Information Exchange vs. 
Joint Task Execution? 

Both information exchange and joint task execution. 

 

(1) Types of Heterogeneity Addressed. 

Heterogeneity of Hardware and Operating Systems.  Java RMI 

uses Java Object Serialization for passing an object from one application’s address space 
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to another’s.  Serialization converts the object from the representation used by the source 

system to an intermediate platform independent representation in a process called 

marshaling.  An unmarshaling process is used to reverse this procedure on the 

destination system, converting the object from the intermediate representation to the form 

used by the destination system.  Thus the serialization process resolves representational 

differences between the source and destination system.  Serialization is limited to 

resolving differences related to heterogeneities of hardware and operating system; 

resolution of other heterogeneities is left to the interoperability engineer.  Serialization 

also requires a Java Virtual Machine (JVM) implementation for the source and 

destination systems.  

Heterogeneity of Presentation.  Since both client and server 

applications must be written in Java, a common set of types is available for parameter 

definition.  Thus, presentation differences related to the use of different data types can be 

eliminated, assuming the designers of the interconnected systems elected to use common 

types in constructing the member values and methods for corresponding classes.  Other 

causes of heterogeneity of presentation such as domain mismatch problems, the use of 

different units of measure, differences in precision, and different field lengths or 

variations in integrity constraints must be resolved by the interoperability engineer. 

Heterogeneity of Organizational Models, Structure, Meaning, 

Scope, Level of Abstraction, and Temporal Validity.  J2EE’s distributed computing 

protocols and APIs do not provide any mechanisms for addressing the remaining types of 

heterogeneity- heterogeneity of organizational models, structure, meaning, scope, level of 

abstraction, or temporal validity.  The interoperability engineer must provide his own 

means for resolving such heterogeneities. 

(2) Capability for Application of Computer Aid for Model 

Correlation.  The crux of the distributed computing capability provided by J2EE is the 

capability for an application to invoke methods of an object residing in a different address 

space.  In providing this capability, the J2EE designers did not take into consideration 

potential heterogeneity in the application’s model of the problem environment.  It was 

expected that a client desiring to invoke a method from another application would 
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conform to the model used by the other application for defining the object’s methods and 

parameters.  Therefore, J2EE provides no assistance for correlating the possibly different 

models of the real-world entities used to capture an application’s problem environment. 

(3) Required Knowledge of Remote Operations.  In order for a 

client to access the methods of a server, it must obtain an object reference to the Java 

RMI server object.  This object reference can be obtained using the JNDI; however, JNDI 

requires either the name of the server object, or a set of attributes that can be used to 

determine the server object reference.  JNDI provides no assistance in resolving potential 

heterogeneities between a client’s model of the name and attribute used to identify a 

desired service and the name and attributes actually used by a server implementation.  

The client must know the actual name used by the server object or the attributes it uses to 

describe itself in order to obtain the server’s object reference.  Therefore, J2EE does 

require a system to have prior knowledge of a remote system’s operations in order to 

utilize its capability. 

(4) Required Modification to Existing System.  If a client 

implementation used a different model for a server’s name, attributes, or methods than 

that used by the server, then the client must be modified to comply with that expected by 

the server implementation.  In addition, as the capabilities provided by J2EE can only be 

used with applications written in Java, if either client or server is written in another 

programming language then they must be modified to utilize J2EE’s distributed 

computing capability. 

(5) Translation Methodology.  Java RMI uses Java Object 

Serialization to pass objects between systems.  A serialized object is a machine-

independent encoded form of the parameters and return values passed between a client 

and a server.  The serialization mechanism implements a two-step translation 

methodology whereby an object’s state is encoded into a machine-independent form at 

the source and then converted to the target system’s representation at the destination.  

However, Java Object Serialization is limited to resolving representational differences 

caused by heterogeneity of hardware and operating systems only.  Other types of 

heterogeneity are unresolved by the serialization process. 
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(6) Capability for Application of Computer Aid for Translation 

Development.  Heterogeneities of hardware and operating systems are resolved under 

J2EE through the Java Virtual Machine and the use of Java Object Serialization for 

passing objects between applications.  While these capabilities provide application 

platform independence, support for resolution of other modeling differences such as 

heterogeneities of organizational models, structure, presentation, meaning, scope, level of 

abstraction, or temporal validity is not provided under J2EE.  Accordingly, facilities for 

applying computer aid to the development of the mechanisms required to resolve such 

heterogeneities is not provided under J2EE. 

(7) Support for Federation Extensibility.  Similar to CORBA 

and the COM+ family, J2EE’s distributed computing capabilities can be utilized to define 

a client-server architecture where the methods used for effecting joint task execution and 

information exchange among federation components are identified by Java interfaces.  

Adding a new system to a federation created using J2EE’s distributed computing 

capabilities can be accomplished by defining new interfaces for the services provided by 

that system.  Existing systems would continue to use the existing interfaces to share tasks 

and exchange information among themselves.  New systems could also access the 

capability provided by an existing system by invoking the method calls provided by the 

client stubs generated for that system’s interfaces.  Only when a new system’s 

capabilities are required by an existing system would modification to that system be 

necessary in order to access the methods provided by the new system interfaces.  Thus 

the federation can be extended without impacting original system interoperation. 

In addition, J2EE provides greater extensibility during 

modification of the information and operations shared among systems than does CORBA 

or the COM+ family.  Modifying a class’s existing capability can be done in a manner 

similar to that done when adding a new system to an existing federation.  In addition to 

providing interface extension through inheritance, classes in Java can have more than one 

interface.  Thus changes to an existing class can be accomplished by creating a new class 

for the modified information as an extension to the existing one.  Then, a new interface 

can be defined for this new class, with the new interface containing the unchanged 
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methods from the original class as well as any modified methods.  Components relying 

on existing interfaces will continue to use them, whereas components requiring the new 

functionality will use the new interface.  Also, because Java allows interface methods to 

be overloaded, the problem of cascading method names seen in the interface extension 

approach for providing type versioning in CORBA is not present in J2EE.  Because J2EE 

provides mechanisms for both adding new systems to a federation and for modifying the 

existing information and operations shared among systems without impacting the 

interoperation of the original systems in the federation, it is considered to provide full 

support for federation extensibility. 

(8) Information Exchange versus Joint Task Execution.  As 

stated in Section II.C.6.f(2) above, the cornerstone of the distributed computing 

capability provided by J2EE is the capability for an application to invoke the methods of 

an object residing in a different address space.  This capability for joint task execution 

among systems can also be used for information exchange; information to be sent from a 

client to a server could be included as parameter values of a getItemFromSender server 

method invoked by the client. 

4. SeeBeyond Integration Suite 
The SeeBeyondTM integration suite provides an architecture and set of tools 

designed for the integration of incompatible legacy systems, databases, packaged 

applications, middleware products, communication protocols, messaging standards, and 

data access paradigms.  SeeBeyond targets the Enterprise Application Integration (EAI), 

Business-to-Business (B2B), and Business-to-Consumer (B2C) domains to provide an 

eBusiness Integration (eBI) solution to the integration of incompatible and non-

interoperable business applications.  The two primary components of the SeeBeyond 

integration suite, e*GateTM Integrator and e*Index Global IdentifierTM, are discussed 

separately, followed by a combined assessment of the SeeBeyond suite’s interoperability 

characteristics.  

a. e*GateTM Integrator Overview 
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SeeBeyond’s e*GateTM Integrator provides an open and extensible 

framework for eBusiness integration.  e*Gate enables centralized management of the 

global eBusiness infrastructure, providing guaranteed delivery with packaged 



transformation and application integration.  e*Gate provides high-level business process 

management, low-level data-type conversion, and communication set-up to enable 

integration of incompatible legacy systems, databases, packaged applications, 

middleware products, communication protocols, messaging standards, and data access 

paradigms. 

Among the capabilities provided by e*Gate is the ability to: 

• Manage information exchange between legacy systems and Web Servers, 
• Integrate systems based on COM, CORBA, and Java,  
• Serve as a universal gateway between Oracle, SQL Server, Sybase, Informix, 

DB2, and older-technology databases, and 
• Provide an Enterprise Integration Backbone.  [EGI00] 

 
(1) e*Gate Integrator Components.  The e*Gate integrator 

consists of four core components, as depicted in Figure II-6: e*Ways, Intelligent Queues 

(IQs), Business Object Brokers (BOBs), and a central Registry.   

 

 
Figure II-6. e*Gate Components (From [EGI00]) 

 
An e*Way is an intelligent adapter that enables communication 

between a connected application, database, or similar element and other e*Gate 

components.  It provides bi-directional, multi-threaded communication in either an event-

driven or scheduled batch mode of operation.  The e*Way adapter uses collaborations 
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defined using Java, C/C++, XSLT, or the Lisp-based Monk scripting language to provide 

transformations required for heterogeneous system integration.  SeeBeyond makes 

available a number of ready-to-use database, application, file system, communication 

protocol, messaging system, and data format/model adapters as well as supports the 

capability for custom adapter generation. 

Intelligent Queues (IQs) are a storage and message routing facility 

that provide persistent storage, guaranteed message delivery, event state support, and 

support for third party queues.  IQs ensure that events are transmitted in the proper 

sequence and without duplication, even during hardware failure recovery. 

A Business Object Broker (BOB) is an internal e*Way that is 

enabled to communicate only with IQs.  BOBs can be used to implement complex, multi-

step business processes.  BOBs utilize routing, parallel processing, and load balancing 

techniques to prevent e*Way bottlenecks and to provide reliable communications across 

unreliable links. 

The Registry is a central repository that contains the master copy 

of all the data processing and business rules, known as collaborations, as well as all of 

the events that carry information between processes.  A Control Broker that updates the 

run-time components as information is changed replicates registry information on each 

platform.  The Control Broker serves to insulate the platform from temporary Registry 

faults or communication problems.  [EGI00] 

 
(2) e*Gate Architecture.  As shown in Figure II-7, e*Gate 

utilizes a layered architecture to separate high-level business process modeling from 

lower-level connectivity and translation concerns.  The three layers, Views and Controls, 

Collaboration Logic, and Application Access are further divided into two sub-layers each 

as depicted. 
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Figure II-7. e*Gate Architecture (From [EGI00]) 

 
The Views and Controls layer contains the Graphic User Interface 

(GUI) that enables people to use the models to run the business.  This layer also includes 

the Registry that contains the data processing and business rules, known as 

Collaborations, and the definition of Events, which carry information between processes.  

Finally, the Views and Controls layer includes the Control Brokers residing on each host, 

which are used to replicate registry information on each platform. 

The Collaboration Logic layer contains the Collaboration Rules 

Editor used to construct the data and process models that define the structure and 

operation of the business.  It provides tools for creating a UML-based graphical model of 

the business processes to be automated.  Analysts create Collaborations and Events that 

represent the business stages, transitions, and data processing activities.  Collaborations 

use rules to identify messages, transform data and invoke APIs.  The Collaboration Logic 

layer provides a graphical linkage between the analytical view of business rules and the 

technical view of messages, data and API calls necessary to implement the business rules. 

The Application Access layer connects the business models to the 

internal and external applications.  The Intelligent Queuing and Application Connectivity 

sub-layers route Events both within the e*Gate environment and to and from external 

applications.  Intelligent Queues provide persistent recording of Event state information 
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necessary to ensure that Events are handled in proper sequence without risk of 

duplication.  [EGI00] 

(3) eBusiness Integration With e*Gate.  eBusiness integration 

using e*Gate involves six steps: Model, Generate, Configure, Collaborate, Monitor, and 

Manage (see Figure II-8).  First, a business analyst uses e*Gate to model the top-level 

business practices for the organization using a UML-based GUI presentation.  Business 

rules tables associate sources with message identifiers, identifiers with field-level 

transformation operations, and transformed messages with destinations. 

 

 
Figure II-8. e*Gate Integration Process (From [Smi01]) 

 
Then, an e*Gate companion tool, e*Insight, automatically 

generates e*Gate integration components.  With e*Insight, users determine whether an 

activity should be implemented as an e*Way or a BOB in the e*Gate schema and then 

configure e*Gate accordingly.  Users then access the Collaboration editor to create and/or 

modify collaborations.  Reusable e*Way adapters connect e*Gate to the application to be 

integrated.  A library of existing adapters provides compatibility with most network 

protocols and information environments.  e*Way adapters provide translation between a 

connected application, database, communication protocol, etc. and the e*Gate network.  
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The e*Way adapter provides translation routines to convert between the associated 

component’s format and all other required formats within the enterprise.  Finally, e*Gate 

provides both List and Diagram views to monitor the stages that business process 

activities pass through as the business process instance runs, providing the analyst with 

the information he needs to manage the activity.  [EGI00] 

b. e*Index Global Identifier Overview 
The e*Index Global Identifier application from SeeBeyond runs on the 

e*Gate Integrator platform and is designed to allow the sharing of customer information 

between disparate systems.  The e*Index application employs a relational database of 

persons’ records with each record automatically cross-referenced to the various local 

identifiers used for that person in referenced local systems.  This cross-reference provides 

a single global identifier for a person that corresponds to the multiple local identifiers that 

person may have in different systems. 

SeeBeyond’s e*Index consists of the following key components: 

• Global Person Database  
• Cross-Index of Identifiers   
• Real-Time Automated Matching Algorithm  
• Quality Workstation for Customer Information Management 

 
e*Index maintains a global relational database that contains a universal 

identifier for each person and relevant demographic information used by e*Index’s 

automated matching process to locate the same person in multiple systems.  Figure II-9 

provides a view of the global identifier customer detail screen illustrating a customer 

universal identifier (UID) and a sample of the demographic data used for correlating 

customer instances. 

Also depicted in Figure II-9 is the cross-index used to match a person’s 

universal identifier in the Global Person Database to each of the local identifiers (local 

ID) for that person contained in systems across the enterprise.  This cross-index allows 

systems to exchange customer information with each other without regard to differences 

in the local customer ID used by each system.  During transit of a message through 

e*Gate, the local ID provided by the source system is replaced with the local ID used by 

the destination system, making the difference in ID’s transparent to the two systems. 
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Figure II-9. e*Index Global Identifier Customer Detail Screen (From [EIGI00]) 

 
In constructing the cross-index, e*Index uses a real-time matching 

algorithm that uses fuzzy logic and statistical weighting techniques to automatically 

correlate local customer information with corresponding information in the global 

database.  The matching algorithm enables a database administrator to tailor the fields 

used to determine a match, assign specific weights to the fields based on relative 

importance in deciding correspondence, and to set threshold values for automatic match 

determination. 

The Quality Workstation application is used to facilitate managing the 

information within the global relational database.  The workstation is used to search the 

database for individual records, add, delete or modify records in the database, identify 

and remove duplicate records, and provide an audit and reporting capability to track 

changes to the database.  [EIGI00] 
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c. Evaluation of Interoperability Approach 
The following evaluation of interoperability characteristics is done for 

SeeBeyond’s eBusiness suite- their e*Gate Integrator and e*Index Global Identifier.  

While e*Gate provides the framework for achieving interoperability among a group of 

connected systems, e*Index provides additional capabilities for limited definition of a 

common data model for representing the real-world entities involved in system 

interoperation and a means for correlating this enterprise wide model with system-

specific implementations.  The results of the evaluation are summarized in Table II-4 and 

discussed below. 

Table II-4. Evaluation of SeeBeyond Support for Resolution of Modeling Differences 

Evaluation Criteria SeeBeyond 
Types of Heterogeneity 

Addressed 
Hardware and Operating System - TBD; 
Organizational Models- partial; 
Structure; 
Scope; 
Level of Abstraction; 
Meaning; 
Presentation; 
Temporal Validity; 

Capability for Application 
of Computer-Aid for 
Model Correlation? 

Partial.  e*Index provides correlation of customer ID’s. 

Knowledge of Remote 
System Methods Required? 

Yes.  (using either CORBA, DCOM, or Java RMI for 
remote method invocation). 

Modification to Existing 
System Required? 

No.  e*Way adapter can be deployed anywhere on the 
network. 

Translation Methodology? Point-to-point translation definition except for 
e*Index’ use of global identifier for Customers. 

Capability for Application 
of Computer-Aid for 

Translation Development? 

Yes.  GUI-based Collaboration Rules editor used for 
translation development; reuse using library of 
pre-built translations. 

Support for Federation 
Extensibility 

Not determinable. 

Information Exchange vs. 
Joint Task Execution 

Information Exchange. 
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(1) Types of Heterogeneity Addressed.  SeeBeyond’s e*Gate 

Integrator targets the interoperation of independently developed, heterogeneous software 

systems.  e*Gate attempts to resolve system heterogeneities that result when dissimilar 

operating systems, databases, communication protocols, interpretations, etc. are required 

to be integrated.   e*Gate focuses primarily on resolving incompatibilities in databases, 

messaging standards, data access paradigms, and communication protocols.  

Heterogeneity of Hardware and Operating Systems.  While e*Gate 

runs on all major variations of UNIX and Windows, as well as OS/390, lack of a defined 

system-independent over-the-wire format such as that provided by CORBA’s ORB, or a 

common set of types such as that defined for OMG IDL or Microsoft’s IDL, makes it 

unclear as to what extent e*Gate supports resolution of hardware and operating system 

differences.  From the information available in [EGI00], it appears that any differences 

attributable to platform or operating system must be resolved through system-specific 

translations provided as part of the Collaboration Rules for a specified e*Way adapter. 

Heterogeneity of Organizational Models.   Similarly, lack of a 

system- or language-independent interface definition language for specifying interactions 

between component systems makes e*Gate’s capability for handling heterogeneities in 

organizational models uncertain.  It does appear that e*Gate provides numerous pre-

defined e*Way adapters for sharing information between Oracle, SQL Server, Sybase, 

Informix, DB2, IMS and older-technology databases and is thus able to resolve 

organizational model differences between them.  Additionally, e*Gate’s full support for 

COM/DCOM and CORBA should enable it to take advantage of those architectures’ 

mechanisms for resolving organizational model heterogeneity. 

Heterogeneity of Structure, Scope, Level of Abstraction, Meaning, 

Presentation, and Temporal Validity.  The primary means for resolving heterogeneities 

among applications is through the e*Way adapter’s use of pre-defined and user-defined 

collaborations.  Collaborations contain the transformations and translations required to 

reconcile differences between applications. The Collaboration Rules Editor generates 

graphical collaboration rules based on a high level scripting language (Monk) and 

provides access to a library of pre-defined data and application connectivity functions.  
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Additionally, e*Gate provides C, C++, and JAVA Collaboration Services to enable 

translation specification using one of these standard programming language 

environments. 

(2) Capability for Application of Computer Aid for Model 

Correlation.  e*Gate, on its own, does not provide support for correlation of information 

being exchanged between systems.  A companion product, e*Index, does provide a 

limited capability for correlating customers in different databases.  e*Index’s real-time 

automated matching algorithm uses fuzzy logic and statistical weighting techniques to 

automatically build a cross reference between a person’s universal identifier and each 

local identifier.  The e*Index matching algorithm only performs correlation of person 

records, although there are plans to extend the capability to other types of records.  Other 

correlation requirements are the responsibility of the system designer.  For example, in 

integrating databases, the system designer is responsible for determining which table in 

one database corresponds to which table in the other.  Once this correspondence is 

established, e*Gate will assist the designer in identifying a mapping between table 

elements and in defining any translations necessary to convert between element 

representations.   

(3) Required Knowledge of Remote Operations.  e*Gate in 

itself does not define a client-server architecture as do CORBA, COM+, and J2EE.  

Therefore, e*Gate does not provide facilities for client invocation of server methods.  

E*Gate does provide adapters for interfacing with CORBA, COM+, and Java 

applications.  These technologies require prior knowledge of remote system methods in 

order to utilize their services.   

(4) Required Modification to Existing System.  e*Gate uses an 

e*Way component to interface external applications to the enterprise.  These e*Ways can 

be deployed on the application’s platform, on another host or platform, or anywhere on 

the network.  Therefore, modification to the existing system application is not required to 

utilize e*Gate’s capabilities, provided that the application provides an API to expose its 

functionality. 
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(5) Translation Methodology.  Although system 

interconnections in e*Gate are handled in a network-centric fashion, translation between 

different representations requires identification of the source and destination 

representations, effectively defining a point-to-point translation methodology and 

potentially requiring n(n-1) translators for n different representations.  e*Index’s global 

relational database provides a universal identifier for each customer together with 

relevant descriptive information that serves as a common intermediate representation for 

customer identification; however, this capability does not extend to other entities 

modeled by the various systems in the enterprise. 

(6) Capability for Application of Computer Aid for Translation 

Development.  e*Gate provides the capability to translate between different data 

representations by enabling the designer to 1) map elements of one representation to 

another, and 2) define the translations required to convert one representation to the other 

(or choose from a pre-defined library of translations).   E*Gate utilizes a GUI-based 

Collaboration Rules editor to assist the designer in the mapping process, and automation 

and reuse techniques to help with translator definition.  A library of pre-built 

functionality is available for all levels of the integration solution (including low-level 

translations).  In addition, the Lisp-based Monk scripting language is available for high-

level definition of translations when required conversions are not available in the library. 

(7) Support for Federation Extensibility.  Sufficient 

information was not available from SeeBeyond to evaluate the support for federation 

extensibility provided by their products.  While it is presumed that e*Gate provides some 

level of support for adding to or modifying existing system federations created using the 

product; however, details regarding any provided versioning support or other extension or 

modification mechanisms were not available. 

(8) Information Exchange versus Joint Task Execution.  

e*Gate focuses primarily on resolving issues relating to data interchange.   Support for 

joint task execution is principally handled by using adapters for interfacing COM, 

CORBA, and Java and applications. 
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5. The High Level Architecture for Modeling and Simulation (HLA) 
The High Level Architecture (HLA) [HLA02] is a software architecture designed 

to enable individual computer simulations to be combined into larger simulations.  As 

defined by Shaw and Garlan [SG96], a software architecture involves elements, 

interactions between those elements, and patterns for those interactions.  In the HLA, the 

combined simulation system created from a compilation of individual computer 

simulations is termed a federation.  The elements of a federation consist of a number of 

federates, a Runtime Infrastructure (RTI), and a common object model of data exchanged 

between federates, the Federation Object Model (FOM).  Rules governing the interaction 

between federation elements are contained in the HLA standard, as are templates for 

defining the patterns to be followed by those interactions.  I first present an overview of 

the elements comprising the HLA, and then discuss the HLA Specification and its 

contents, which provides the rules governing interactions between elements and patterns 

for those interactions.  I then provide an assessment of HLA’s capabilities, using the 

criteria for evaluating interoperability approaches defined in Section II.B. 

a. HLA Elements  
As mentioned in the previous paragraph, HLA elements consist of the 

individual federates comprising a federation, an RTI that enables federates to execute 

together as a federation, and an FOM that provides a common object model of the data 

exchanged between federates.  A federate is an individual simulation system that forms a 

federation when combined with other simulations.  A federate could represent one 

software platform such as a combat vehicle simulator, or an aggregate simulation, such as 

a combined battlefield simulation system used for tactics planning or training.  A federate 

is typically larger than a common software component; it generally exists as a complete 

running program rather than component routines or objects in a library. 
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The RTI provides functions needed for simulation interoperability that 

apply generically to component-based simulation systems as opposed to those that are 

specific to a particular federate.  It controls interactions between federates.  It provides an 

interface between federates and the RTI for execution of RTI functionality.  It contains 

network functions needed to accomplish distribution in a distributed federation.  Finally, 

the RTI serves as an intermediary between federates, sheltering them from changes to the 



RTI or to each other.  The RTI is acquired from an HLA middleware vendor for use by 

the federation developer. 

The FOM provides a common object model of the data exchanged 

between federates in a federation.  The FOM consists of data created by the federation 

developer from knowledge of information to be shared among federates.  The FOM is 

provided as a parameter to the RTI to manage a federation execution; a term used in the 

HLA to describe a group of federates executing together during a specified session.  

[KWD99] 

b. HLA Specification 
The HLA specification provides the standard for the rules governing 

interactions between elements of a federation and the patterns for those interactions.  

Specification of the initial HLA technical architecture was completed in 1996.  The latest 

version of this specification, version 1.3, was released in April 1998 and adopted by the 

Object Management Group (OMG) that same year as the “Facility for Distributed 

Simulation Systems” standard.  The Institute for Electrical and Electronic Engineers 

(IEEE) also approved standards P1516 (HLA Rules), P1516.1 (Interface Specification), 

and P1516.2 (Object Model Template) in September 2000 covering the HLA.  The HLA 

standard detailed by the Specification consists of the following components: 
 

• Object Model Template (OMT)- provides a meta-model that describes the 
allowed structure for the Federation Object Model (FOM). 

• Interface Specification- specifies the interface between Federates and the Runtime 
Infrastructure (RTI); includes the interface the RTI presents to federates and the 
interface federates present to the RTI. 

• HLA Rules- provide the principles and conventions that must be followed to 
achieve proper interaction of federates during a federation execution; HLA Rules 
provide the design principles for the Interface Specifications and OMT. 
 

Details of these specification components are found in the following paragraphs. 

(1) Object Model Template (OMT).  The OMT prescribes the 

structure of the FOM for any HLA-compliant federation.  A federation-specific FOM is 

created for each federation.  The FOM describes the information that is shared among 

federates.  Data exchange among federates is accomplished via the RTI; the FOM 
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prescribes the vocabulary for such data exchange.  The RTI uses the FOM to achieve 

federate interaction. 

The OMT defines two main components for use in constructing an 

FOM: object classes and interaction classes.  Object classes are used to capture simulated 

entities that are of interest to more than one federate and that are expected to persist for 

some interval of simulated time.  Interaction classes are used to represent simulated 

events between federates that occur at a point in simulated time but don’t persist.  

Information regarding an object class is contained in its attributes.  Similar information is 

contained in an interaction class’s parameters.  Communication between federates is 

accomplished via the RTI through exchange of attribute and interaction class instances. 

Object and interaction classes are defined using a hierarchical 

structure in order to enable the FOM to change without effecting federates that depend on 

the original class definition.  New classes are created by specializing existing classes.  

The HLA is designed so that an FOM can be extended without invalidating federate 

software written to expect the original FOM. 

(2) Interface Specification.  The interface specification defines 

the services the RTI offers to federates and vice versa.  HLA services fall into six groups: 

1) Federation Management, 2) Declaration Management, 3) Object Management, 

4) Ownership Management, 5) Time Management, and 6) Data Distribution 

Management. 

Federation Management services define a federation execution in 

terms of existence and membership.  These services provide facilities for creating a 

federation execution and enabling a federate to join the execution or resign from it.  

Federation management services are also used to accomplish federation-wide operations 

such as synchronization between federates and federation status capture. 

Declaration Management services provide the publish/subscribe 

mechanism by which federates share attributes and interactions.  Declarations signal a 

federate’s intent to produce or consume data and are used to transform data received by a 

federate.  Each federate must provide a translation between its internal notion of 
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simulated entities and the FOM’s notion.  This process may be involved if a federate was 

not developed with the intention of HLA compliance. 

Object Management services define the services used for the actual 

exchange of data.  They are used by a federate to send and receive interactions and to 

register and update an object class’s attributes.  They are used by the RTI to send 

interactions, discover new objects, and to receive updates of object attributes. 

A federate must own an object attribute in order to update its 

value.  Ownership management services are used by the RTI to transfer object attribute 

ownership among federates.  Different federates may own the various attributes of an 

object, and are thus responsible for updating the attributes that they own.  Ownership 

management services govern the transfer of object ownership between federates. 

Time Management services enable federates to advance their 

logical time in coordination with other federates in order to provide federation 

synchronization.  These services are also used to control the delivery of time-stamped 

events in order to ensure proper event sequencing between federates. 

Data Distribution Management services are used to control the 

producer-consumer relationships among federates.  Whereas Declaration Management 

services provide the notification mechanism for federates to alert the RTI that it has data 

to publish or that it has a subscription request, Data Distribution Management services 

supply the mechanisms for providing the object and interaction class instance data to 

fulfill the publish-subscribe transaction. 

(3) HLA Rules.  HLA Rules provide the design goals and 

constraints for HLA-compliant modeling and simulation systems.  HLA Rules include 

Federation Rules that apply to the federation as a whole and stipulate how federates must 

interact and Federate Rules that specify the interface and support that a federate must 

provide to the federation. 

Included in the Federation Rules is the requirement for a federation 

to provide an FOM that stipulates the common vocabulary for the federation.  The rules 

also require federates to exchange FOM data via the RTI, with federate-RTI interactions 

governed by the HLA Interface Specification.  Additionally, the rules require that 
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simulation-specific object representations are kept in the federates and not in the RTI.  

Finally, Federation Rules specify that an object attribute can be owned by at most one 

federate at any time- this prevents problems associated with simultaneous attempts to 

update an attribute’s value. 

The Federate Rules require federates to have an HLA Simulation 

Object Model (SOM) documented in accordance with the HLA OMT to record 

simulation information that a federate might expose to the federation.  These rules require 

that a federate comply with its SOM when sending and/or receiving attributes and 

interactions.  They also obligate a federate to adhere to the policy specified in its SOM 

regarding transfer and/or acceptance of attribute ownership as well as the conditions 

specified for attribute update.  Finally, Federate Rules stipulate that federates manage 

their local time in a way that will allow them to coordinate data exchange with other 

members of the federation.  [KWD99] 

c. Evaluation of Interoperability Approach 
An evaluation of HLA’s interoperability characteristics is done using the 

criteria specified in Section II.B.  The results of the evaluation are summarized in Table 

II-5 and discussed below. 

(1) Types of Heterogeneity Addressed.  The RTI has no notion 

of the type of an attribute or parameter; it deals with them as uninterpreted sequences of 

bytes.  If source and destination federates differ in their interpretation of transmitted data, 

i.e., they use different types to represent the same attribute or parameter, then the data 

may be interpreted incorrectly unless some type of conversion is performed between 

representations.  In HLA, the burden of interpreting attributes and parameters is placed 

on the federates, requiring federation designers to agree on the interpretation selected or 

to provide translations to compensate for differences when they exist. 
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However, implementation of the HLA Interface Specification can 

be accomplished using other interoperability approaches.  One such approach provides 

implementation of RTI interfaces with the Object Management Group (OMG) Interface 

Definition Language (IDL) API utilized by the Common Object Request Broker 

Architecture (CORBA).  OMG IDL’s primitive and constructed types could serve as a 

common, intermediate representation.  Under this approach, federates would be 



responsible for modeling object attributes or interaction parameters using OMG IDL.  

Differences between the federate model and the OMG IDL model relating to 

heterogeneity of hardware and operating systems would be resolved by the IDL 

implementation used by the federate. 

 

Table II-5. Evaluation of HLA Support for Resolution of Modeling Differences 

Evaluation Criteria HLA 
Types of Heterogeneity 

Addressed 
Hardware and Operating System  

(using OMG IDL); 
Organizational Models (using OMG IDL); 
Presentation (Partial, using OMG IDL) 

Capability for Application 
of Computer-Aid for 
Model Correlation? 

No.  Responsibility for resolving differences in 
attribute and parameter interpretation placed on 
federates; no assistance provided by Object 
Model Development Tool in establishing 
correspondence between interpretations. 

Knowledge of Remote 
System Methods Required? 

Not Applicable.  Direct interaction between federates 
is not allowed in the HLA. 

Modification to Existing 
System Required? 

Yes.  Modification to non-HLA-compliant federates 
required in order to exchange data. 

Translation Methodology? Not Specified.  HLA’s definition of a common object 
model for the data exchanged between federates 
(the FOM) would suggest use of a two-step 
translation methodology. 

Capability for Application 
of Computer-Aid for 

Translation Development? 

No.  Responsibility for resolving differences in 
attribute and parameter interpretation placed on 
federates; no assistance provided by Object 
Model Development Tool for creating 
translations to compensate for differences in data 
interpretation. 

Support for Federation 
Extensibility 

Full support.  Object and interaction class inheritance 
hierarchy enables federation to be extended or 
modified without invalidating existing federation 
software. 

Information Exchange vs. 
Joint Task Execution? 

Information Exchange. 

 
Similarly, using OMG IDL’s definition of a set of primitive and 

constructed types serves to eliminate problems resulting from the use of disparate data 
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types.  However, resolution of higher-level differences in presentation such as relates to 

domain mismatch problems, different units of measure, differences in precision, and 

different field lengths or variations in integrity constraints are not resolved by IDL and 

must therefore be addressed by the system designer. 

OMG IDL also supports resolution of differences caused by 

heterogeneity of organizational models.  As was seen with CORBA in 

Section II.C.1.c(1), OMG IDL enables federates implemented in either object-oriented or 

procedural languages to interface with the RTI through the use of IDL’s client stubs and 

server skeletons. 

As seen in Section II.C.1.c(1), other modeling differences caused 

by heterogeneities of structure, scope, level of abstraction, meaning, and temporal 

validity are not resolved by the use of OMG IDL.  These differences are the 

responsibility of the federates to resolve. 

(2) Capability for Application of Computer Aid for Model 

Correlation.  From experience gained during early efforts to use the architecture for 

achieving interoperability among simulation systems, it became evident to HLA’s 

developers that automation was needed to support the federation development process.  

Three tools were identified to provide automation support to this process: 1) Object 

Model Development Tool, 2) Object Model Library, and 3) Object Model Data 

Dictionary. 

The Object Model Development Tool provides automated support 

for developing HLA object models, for generating RTI federation execution data, and for 

storing and retrieving object models in the Object Model Library.  The Object Model 

Library provides storage of Federation Object Models (FOMs) and Simulation Object 

Models (SOMs) to support object model reuse.  The Object Model Data Dictionary 

supports object model standardization through maintenance of a repository of common 

data components for object model development. 

As mentioned previously in Section II.C.5.c(1), the RTI does not 

consider attribute or parameter type when facilitating federate data exchange, placing the 

burden of attribute and parameter interpretation on the federates.  Therefore, each 

 70



federate is free to use whatever model it deems appropriate for attribute and parameter 

representation.  Potential differences between attribute and parameter models could 

occur, particularly when combining independently developed federates.  Establishing 

correspondence between different models of the same data is required to enable federates 

to interoperate.  The Object Model Development Tool could provide assistance for 

correlating different models of the same data on different systems.  However, HLA does 

not provide any capability for application of computer aid for model correlation. 

(3) Required Knowledge of Remote Operations.  HLA 

provides facilities for information exchange among federation components.  Such 

information exchange is done through interaction between a federate and the RTI; 

federates do not interact explicitly as they might using CORBA, the COM+ family, or 

J2EE.  Interactions with the RTI are explicitly defined in the HLA interface specification.  

Direct interaction between federates is not allowed in the HLA, therefore knowledge of 

what operations a federate might make available for external invocation is not applicable. 

(4) Required Modification to Existing System.  In order to 

participate in an HLA federation, federates must be HLA-compliant.  Federates must 

comply with the HLA Interface Specification in order to communicate with the RTI.  

They must also follow the principles and conventions for federation operation specified 

in the HLA rules.  Modification is required for non-HLA compliant federates to exchange 

information using the HLA. 

(5) Translation Methodology.  The translation methodology 

used for resolving differences in interpretation of object attributes and interaction 

parameters among federates is not specified by the HLA.  However, HLA’s definition of 

a common object model for the data exchanged between federates (the FOM) would 

suggest that a two-step translation methodology be used.  Using a two-step translation 

process, a federate would be responsible for converting the attributes and parameters 

from its own model to that used by the FOM. 

(6) Capability for Application of Computer Aid for Translation 

Development.  HLA places the burden of interpreting attributes and parameters on the 

federates.  However, it does not provide any support to the developer for creating 
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translations to compensate for differences in interpretation of such data on different 

systems.  While such a capability would seem appropriate for inclusion with HLA’s 

Object Model Development Tool, it has not been provided. 

(7) Support for Federation Extensibility.  Under the HLA, each 

federation defines a Federation Object Model (FOM) that describes the data and 

occurrences that are shared among federates.  The FOM consists of object classes and 

interaction classes.  Object and interaction classes are organized as separate single-

inheritance trees to reflect the relationships among classes.  Each tree contains a single 

root class, ObjectRoot and InteractionRoot, which define no parameters or attributes, 

respectively.  All other classes inherit from these root classes, with each class having 

exactly one immediate ancestor or superclass.  The resultant inheritance hierarchies are 

used to protect federates from change.  Federates that were written to expect and use 

certain object and interaction classes can continue to use them even if the FOM is 

modified by extending one of the existing classes.  Existing federates will continue to 

operate using the original object and interaction classes while newer federates will use 

attributes and parameters from the new classes that extend the original classes. 

This mechanism can be used both for adding new object and 

interaction classes to a federation or for modifying existing classes.  The object model of 

the data and occurrences shared among systems (the FOM) can thus be extended or 

modified without invalidating federation software that was written assuming an earlier 

version of the FOM.  Therefore, HLA is considered to provide full support for federation 

extensibility. 

(8) Information Exchange versus Joint Task Execution.  HLA 

is designed to support information exchange among federation components.  As stated in 

Section II.C.5.c(3), direct interaction between federates is not allowed in the HLA, 

therefore precluding joint task execution among systems.  In line with that prohibition, 

HLA objects and interactions have no behaviors associated with them in the FOM. 
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6. eXtensible Markup Language (XML)2 
While not providing a distributed computing facility such as that offered by 

CORBA, COM+, or J2EE, or an architecture for combining independently developed 

systems such as that presented by SeeBeyond’s integration suite or HLA, the eXtensible 

Markup Language (XML) has been publicized as a means for achieving system 

interoperability.  XML, developed by the World Wide Web Consortium (W3C), provides 

a self-describing means for representing the data used by and shared among applications.  

It is an extension of the Standard Generalized Markup Language (SGML) and is designed 

to provide the flexibility and power of SGML while attempting to capture the widespread 

acceptance and relative simplicity of another SGML derivative, the HyperText Markup 

Language (HTML) [ABK00]. 

The cornerstone of the eXtensible Markup Language is the XML document, 

which consists of a sequence of data elements and element attributes with “tags” used to 

delimit and describe the meaning and use of the data to the user or relevant application.  

An XML document can consist of any permissible sequence of elements and their 

attributes.  In order that the pertinent application might be better able to understand and 

utilize the data in a received document, XML utilizes a schema to structure and delimit 

the allowable values for XML documents.  This schema can be in the form of a 

Document Type Definition (DTD) or of the newer XML Schema.  Interfaced systems can 

utilize the DTD or XML Schema to specify the vocabulary of a system’s allowable data 

[ABK00]. 

XML is actually a family of technologies.  In addition to the DTD and XML 

Schema, XML’s immediate family includes the Document Object Model (DOM), the 

Simple API for XML (SAX), and the eXtensible Stylesheet Language (XSL).  Each of 

these will be discussed in the following paragraphs.  First, though a quick illustration of 

an XML document’s structure and a discussion of the key concepts of well-formedness 

and validity is provided. 

                                                 
2 Portions of this material originally appeared in the thesis entitled Integrated 

Development Environment (IDE) for Construction of a Federation Interoperability 
Object Model (FIOM) [CY01]. 
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a. XML basics 
The best way to get a feel for XML is by viewing an example.  Figure 

II-10 shows a simple XML document providing a citation for this dissertation. 

 
<?xml version="1.0" encoding="UTF-8"?> 
< > 
 < >Paul Young</ > 
 < >Heterogeneous Software System Interoperability Through  
   Computer-Aided Resolution of Modeling Differences</ > 
 < ="Ph.D. Dissertation"/> 
 < >Naval Postgraduate School</ > 
 < >Monterery, CA</ > 
 < >June 2002</ > 
</ >  

reference
author author
title

title
publication
publisher publisher
publisherLocation publisherLocation
publicationDate publicationDate

reference

 publicationType

Figure II-10. Example XML Document 

 
From the figure, XML appears to look a lot like HTML.  The major 

difference is that XML is concerned primarily with representing the content of the data 

whereas HTML is more concerned with its presentation.  Another difference is that XML 

is not constrained by a static tag set as is HTML; the XML designer is free to define tags 

however he sees fit.  XML’s tag set thus provides the added benefit of separating the 

model created from its view.  All XML documents are properly nested (hierarchical) tree 

structures.  This example document contains a root element <reference>, which contains 

child elements <author>, <title>, <publication>, <publisher>, <publisherLocation>, and 

<publicationDate>.  In addition, the (empty) <publication> element includes an attribute 

publicationType which is used to further clarify the contents provided in the element.  

Notice that the XML document nicely describes the structure of the data but does not say 

much as to what the elements mean, other than what can be inferred by the element 

names. 

(1) Well-formedness.  A document is not an XML document 

unless it is well-formed, i.e., syntactically correct, according to the W3C’s XML 

specification.  This means that an ill-formed document will not be accepted for 

processing.  This simplifies the internal code of parsers and also speeds up the processing 

of documents.  
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(2) Validity.  An XML document is valid if it has an associated 

DTD or XML Schema and if the document complies with that schema.  A schema further 

constrains the syntax of the XML document and also adds an implied semantics to the 

XML document through the terms used to define the allowable document tag sets. 

b. Constraining Content 
(1) Document Type Definition (DTD).  A DTD specifies the 

logical structure of an XML document.  The DTD provides a formal grammar for 

describing document syntax and semantics.  DTD’s have several characteristics that limit 

their effectiveness for constraining document content.  First, a DTD has no capability for 

typing data content.  DTDs treat almost all of its data as strings.  Second, DTDs are not 

written using XML.  They use their own syntax for describing the allowable content of an 

XML document.  This disallows the use of many XML tools for displaying and 

manipulating information within the DTD.  Third, DTDs are closed constructs; there is 

no simple and clear way to accomplish DTD extension, limiting the possibility of reuse 

between applications.  Thus, DTDs are largely being supplanted with another mechanism 

for constraining document content, the XML Schema. 

(2) XML Schema.  The XML Schema addresses each of the 

limitations seen with the use of DTDs for constraining document content.  First, XML 

Schema provides a number of primitive, generated, and user-defined data types for 

specifying data content.  Primitive types reflect those found in most modern 

programming languages such as string, boolean, float, etc.  Generated types build from 

existing types such as the primitive types or other generated types.  Users can also define 

their own types using the primitive and generated types as building blocks in their 

construction.  Second, an XML Schema is defined using XML syntax.  This enables the 

capability of using existing XML parsers and other tools to construct and verify the well-

formedness of XML Schemas that is not possible with DTDs.  Finally, XML Schemas are 

extensible.  A new XML Schema can be defined that extends an existing XML Schema; 

XML Schema can be included as part of another XML Schema, reducing the amount of 

rework required when defining commonly used data constructs.  [BM01] 
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c. Programmatic Access 
The Document Object Model (DOM) and Simple API for XML (SAX) 

were both created to serve the same purpose.  Their purpose is to give one access to 

change and update the information stored in XML documents using any programming 

language.  However, both of them take very different approaches in providing that access. 

(1) Simple API for XML (SAX).  SAX provides access to 

documents as a sequence of events.  It works as follows.  A SAX parser sequentially 

processes an XML document, signaling an event when a specified item such as an open 

tag or close tag is found.  The programmer is responsible for interpreting these events by 

writing an XML document handler class.  This handler class is responsible for specifying 

what action is required to be taken when a tag is encountered, such as storing an element 

for future reference.Document Object Model (DOM).  XML only supports “has a” or 

“parent-child” relationships, such as a <person> may contain sub-elements of <name>, 

<social_security_number>, <height>, <weight>, <eye_color>, etc.  This hierarchical tree 

structure is preserved with the Document Object Model (DOM).  The DOM creates a tree 

of nodes based on the structure and information contained in an XML document.  

Interacting with this tree provides access to the information contained in the XML 

document.  The DOM takes a generic approach, in that it will take any well-formed XML 

document and model it as a document object tree.  Once an XML parser or other custom 

code has created the document object tree, access to the tree’s elements is provided for 

modification or deletion of existing elements, or creation of new elements, using the 

interfaces provided by the DOM’s API. 

The choice of whether to use SAX or the DOM is dependent on 

how much of a document the programmer wishes to access, ease of use, and performance 

concerns.  The SAX treats a document as a series of events, which means it can quickly 

and efficiently analyze large XML documents.  The drawback is that the programmer has 

to define the data structure to hold element data.  The DOM must load the entire 

document in memory before one has access to its data. This takes more memory and time 

as compared to SAX.  The DOM’s strength is that the parser does almost everything, 

from reading the XML document in, to creating an object model of the document’s 
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contents, to providing a reference to this object model (a Document object) for 

manipulation. 

d. Translations 
The XML family also provides a capability for translating between 

different data representations via the eXtensible Stylesheet Language (XSL).  XSL 

actually consists of three component languages: a transformation language (XSLT), an 

accessing language (XPath), and a formatting language (XSL-FO).  As XSLF is 

principally concerned with the presentation of data rather than its representation or 

meaning, it will not be covered further. 

XSLT is a high-level, declarative, XML-based language.  It allows a 

programmer to create XSLT stylesheets that can be used to transform an XML document 

into any text-based document.  Document transformation using XSL occurs as follows.  

First, an XSL engine is used to convert an XML document into its equivalent tree 

structure, which contains a number of nodes representing the elements and attributes of 

the XML document.  Next, a stylesheet is applied to the XML document tree structure to 

transform the XML document to another form.  XPath is used to traverse the document 

tree, using pattern matching to locate the document component to be transformed.  Then, 

applying rules (templates) contained in the XSLT stylesheet, the body of the template 

element replaces the matched node in the source document, transforming it to its 

destination form. 

Transformations involving other than component renaming and reordering 

using XSLT is limited.  XSLT does have a very limited, non-standardized capability for 

performing functional transformations by escaping into another language such as 

JavaScript or Java.  The W3C’s XSLT Recommendation does not address any aspect of 

this mechanism nor does it require that an XSLT processor provide any means for 

performing functional transformations.  This may be remedied in future versions of 

XSLT. 

e. XML Data-Binding 
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Whereas XML provides extensive facilities for data definition, 

programming languages often provide greater capability and more efficient methods of 

data manipulation.  XML data binding technology can be used to take advantage of an 



object-oriented language’s data manipulation capabilities by converting XML schema 

and documents into equivalent language-specific class and object definitions, 

respectively.  Then, manipulation of the data can be performed using the programming 

language’s native facilities, with storage and transmission of the data between 

applications accomplished using XML. 

(1) An Object-Oriented View.  If you view an XML schema in 

object-oriented terms, it can be equated to a class.  Furthermore, an XML document, 

which is described and constrained by a particular schema, can be equated to an object.  

XML data binding is Java methodology, along with an API, that allows programs to be 

written that access and manipulate the content of XML documents in an object-oriented 

fashion. 

(2) Definition.  The Java Architecture for XML Binding 

(JAXB) Working Draft Specification [Rei01] defines XML data-binding as a facility 

containing two components:  A schema compiler and a marshaling framework.  The 

schema compiler binds components of an input schema to derived lightweight classes.  A 

lightweight class is conceptually the same as a Java Bean providing access to the content 

of the corresponding schema component via a set of accessor and mutator (i.e., get and 

set) methods.  The derived lightweight classes will maintain all the constraints described 

in its corresponding schema.  This ensures that when the class instance (i.e., object) is 

unmarshaled it will not only be well-formed, but valid as well.  The marshaling 

framework is a runtime API that, in conjunction with the derived lightweight classes, 

supports three primary operations: 

• The unmarshaling of an XML document into a Java object that is an instance of a 
schema-derived class.  This schema-derived class is composed of interrelated 
instances of both existing and schema-derived classes. 

• The marshaling of an object back into an XML document. 
• The validation of member variables against the constraints expressed in the 

schema. 

In summary, the generated lightweight class will contain the following: 

• Member variables representing the content of the input XML Schema. 
• Get and set methods to access the generated member variables while maintaining 

constraints of the original schema. 
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• The unmarshal, marshal, and validate methods to convert an XML document into 
an instance object of the generated lightweight class and back. 
 

 
Figure II-11. XML and Java Relationships (From [Rei01]). 

 
Figure II-11 above shows how XML Schemas, XML documents, 

Java classes, and Java objects are related under this framework.  As can be seen, these 

relationships preserve equivalence, i.e., round tripping when converting between a 

document and an object or correspondingly when converting between a schema and a 

class.  In other words, the unmarshaling of an XML Document and then immediate 

marshaling of the produced Java object(s) should result in an equivalent copy of the 

original XML Document. 

(3) Why Use Data-Binding?  The parse trees of the W3C DOM 

API and parser events of the SAX API are primitive, constricting, and more focused on 

the structure vice the content of a XML document.  Also, the DOM and SAX APIs treat 

all data as strings requiring the casting of data to a suitable type.  In contrast, data binding 

facilitates the direct mapping (transforming) of an XML document to objects while 

maintaining the constraints imposed by its corresponding schema.  Thus, all the benefits, 

power, and familiarity of the object-oriented paradigm are available.  In effect, the 

programmer does not have to “reinvent the wheel” in gaining access to and updating the 

element content within a document.  The programmer has all this along with the 

confidence that any resulting change in state will not violate well-formedness and validity 

of the resulting XML document. 
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f. Evaluation of Interoperability Approach 
XML’s interoperability capabilities are evaluated using the criteria 

specified in Section II.B.  The results of the evaluation are summarized in Table II-6 and 

discussed in the following paragraphs. 

Table II-6. Evaluation of XML Support for Resolution of Modeling Differences 

Evaluation Criteria XML 
Types of Heterogeneity 

Addressed 
Hardware and Operating System  (using XML Schema 

primitive and user defined types); 
Organizational Models  (XML useable as medium for 

information exchange with either object-oriented 
or procedural languages); 

Structure  (structural differences resolvable using 
XSLT); 

Presentation  (Partial.  XML Schema types enable use 
of common data type between representations); 

Meaning  (differences in meaning resolvable using 
XSLT) 

Capability for Application 
of Computer-Aid for 
Model Correlation? 

No. 

Knowledge of Remote 
System Methods Required? 

Not applicable. 

Modification to Existing 
System Required? 

No.  XSLT could be used in wrapper or middleware 
application to convert from native model of 
external interface to XML model. 

Translation Methodology? Not specified.  XSLT could be used to define either a 
point-to-point or two-step translation process. 

Capability for Application 
of Computer-Aid for 

Translation Development? 

Partial.  XSLT provides declarative approach for 
converting between representations.  Limited 
capability for translations requiring more than 
renaming/reordering of data elements. 

Support for Federation 
Extensibility 

Partial support.  Data type extension nullifies parser 
use for validation. 

Information Exchange vs. 
Joint Task Execution? 

Information Exchange. 

 

(1) Types of Heterogeneity Addressed. 

Heterogeneity of Hardware and Operating Systems.  XML Schema 

provides a number of primitive, generated, and user-defined datatypes for specifying data 
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content.  The word size and style of data format for these data types is specified by the 

XML Schema Datatypes specification [BM01].  As long as an XML implementation 

(parser, etc.) is provided for interconnected platforms and common XML Schema 

datatypes and constraints are used for specifying the data content used by communicating 

applications, heterogeneities related to differences in hardware and operating system will 

be resolved when using XML to exchange information among systems. 

Heterogeneity of Organizational Models.  XML provides a 

mechanism for data definition and organization that is compatible with both object-

oriented and structured analysis and design approaches.  Accordingly, XML is useable as 

an information exchange medium with either object-oriented or procedural languages. 

Heterogeneity of Presentation.  The primitive, generated, and user-

defined datatypes specified in XML Schema provide a means for defining common data 

types for the information shared among systems.  XML Schema datatypes additionally 

prescribe a means for specifying constraints on the data imposed by the problem domain.  

These constraints include numeric bounds, set and list ordering, permissible string 

representations, etc.  By providing a means for defining common data types and 

constraints for the information shared among systems, XML provides the capability for 

resolving presentation differences related to the use of disparate data types.  The 

interoperability engineer must use methods outside those provided by XML to resolve 

other presentation differences such as domain mismatch problems, the use of different 

units of measure, differences in precision, and different field lengths or variations in 

integrity constraints. 

Heterogeneity of Structure and Meaning.  When using XML to 

specify the data content shared by communicating applications, heterogeneities of 

structure and meaning between application data models can be resolved using XSLT.  

Conversions between models are effected using an XSLT stylesheet, which employs a 

declarative approach for converting between representations.  Differences in structure 

and meaning are resolved by defining stylesheet elements that map attributes or elements 

in one model to their corresponding components in the other. 
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Heterogeneity of Scope, Level of Abstraction, and Temporal 

Validity.  The use of XML Schema data types and XSLT do not provide the means for 

resolving heterogeneities of scope, level of abstraction or temporal validity.  The 

interoperability engineer must provide other methods for resolving these types of 

heterogeneity. 

(2) Capability for Application of Computer Aid for Model 

Correlation.  While there are tools available for creating XSLT stylesheets that map one 

XML format to another, there are no tools available that help determine the 

correspondence between two XML formats used to model the same real-world entity in 

the problem environment.  Determining this correspondence is the responsibility of the 

interoperability engineer. 

(3) Required Knowledge of Remote Operations.  XML does 

not provide the capability for remote method invocation, as do CORBA, COM+ and Java 

RMI.  Therefore, the requirement for having prior knowledge of a remote system’s 

operations in order to exploit their capability does not apply to XML. 

(4) Required Modification to Existing System.  As indicated in 

Section II.C.6.f(1), XSLT can be used to resolve differences in structure and meaning 

among independently developed systems.  This is achieved by XSLT’s ability to convert 

from one XML representation of the real-world entities whose state is shared among 

systems to another.  Although the information exchanged among systems may not be in 

the form of an XML document conforming to a schema representation of the system’s 

external interface, it may still be possible to use XML to resolve heterogeneities of 

structure and meaning without requiring system modification.  As mentioned in 

Section II.C.6.d, XSLT can be used to convert from an XML representation to any other 

text-based document.  Therefore if the federation components use a text-based 

mechanism for exporting or importing information (a common approach for many legacy 

systems), a wrapper or middleware application of XSLT could be used to convert from 

the text-based representation of the exported or imported information to an equivalent 

XML representation.  Then, XSLT could again be used to resolve differences in structure 

and meaning between XML representations.  Therefore, resolution of heterogeneities of 
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structure and meaning could be accomplished without modification to existing systems 

providing such a text-based method of information exchange. 

(5) Translation Methodology.  Use of XSLT to resolve 

heterogeneities of structure and meaning could be accomplished using either a point-to-

point or two-step translation process.  Translation of shared information could be 

accomplished using XSLT to convert directly between source and destination 

representations, or through the use of an intermediate representation, converting between 

source or destination and intermediate representations. 

(6) Capability for Application of Computer Aid for Translation 

Development.  XSLT provides the capability for resolving representational differences 

related to heterogeneities of structure and meaning using a declarative approach for 

converting between representations.  Tools are available for creating XSLT stylesheets 

that map from one XML format to another using a graphical drag and drop interface for 

specifying the correspondence between the elements of the two formats.  However, 

limited capability is provided for translations requiring more than renaming or reordering 

of data elements. 

(7) Support for Federation Extensibility.  Although XML 

doesn’t have the same objective as the previously reviewed architectural and tool suite 

approaches to interoperability, it can be used in creating an interoperable federation of 

systems.  Other approaches such as CORBA, COM+, and Java RMI are oriented around 

providing a distributed computing system whereby components can invoke each other’s 

methods, whereas XML’s focus is on the structured representation and definition of 

information.  XML alone cannot be used to define an interoperable federation; however, 

the use of XML for describing data exchanged between components of a federation can 

be used to support system interoperability. 

As its name implies, XML is designed to be extensible.  This 

design feature can be used to support changes to the information shared among federation 

systems as additional systems are added to the federation, or extensions are made to the 

information exchanged among systems, or both, without adversely affecting 

interoperation of the original system federation.  To extend the definition of an existing 
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data type for use in a later version, you simply add another element to the definition.  

Applications can use standard tools such as the DOM or SAX to manipulate the 

information contained in the XML definition of a data type, thus applications expecting 

the original data type can selectively ignore the additional data elements while 

applications that can make use of the additional information do so [SV02]. 

This methodology for data type extension is not without its 

limitations, as applications that validate instances of a data type against a DTD or XML 

Schema would fail if presented an instance of the extended data type when expecting the 

original data type.  The choice of whether to use schema validation is up to the 

application, so data type extension could be accomplished by ignoring the validation 

feature of the XML parser.  However, data type content and consistency would have to be 

enforced by the application, eliminating one of the benefits of XML use for data 

description.  Since XML alone cannot be used to define an interoperable federation and 

data type extension cannot be accomplished in conjunction with the use of an XML 

parser’s validation capability, XML is considered to only provide partial support for 

federation extensibility. 

(8) Information Exchange versus Joint Task Execution.  XML 

provides the means for representing the data used by and shared among applications.  It 

does not provide the capability for one application to execute the methods from another 

as do CORBA, COM+, or Java RMI.  Therefore, interaction among components of a 

federation using XML is limited to information exchange. 

D. SUMMARY 
This chapter discussed the existence of modeling differences among 

independently developed systems, citing the major causes of such differences as well as 

providing a classification of system heterogeneity.  Then, a number of criteria were 

selected for conducting an evaluation of existing interoperability approaches in order to 

compare their success in resolving such heterogeneities. 
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These criteria were used to evaluate six of the leading approaches for achieving 

interoperability among independently developed systems.  The first of these approaches, 

CORBA, provides the capability for addressing heterogeneities of hardware and 

operating systems, organizational models, and for partially resolving heterogeneity of 



presentation.  CORBA also provides the capability for heterogeneity resolution in both an 

information exchange and joint task execution scenario.  However, CORBA’s 

shortcomings include 1) failure to address the complete spectrum of heterogeneity; 

2) lack of assistance in correlating different models of the same real-world entity on 

component systems; 3) lack of assistance in defining the translations required to resolve 

such modeling differences; 4) prior knowledge of a server’s method name and the type 

and model of the method’s parameters are needed by a client system in order to utilize 

their functionality; and 5) modification to existing systems not developed in compliance 

with the CORBA standard is required in order to enable system interoperation. 

The second approach, the COM+ architecture family, provides a similar capability 

as that provided by CORBA.  In addition, it enables interoperation among binary 

software components whereas CORBA addresses interoperability at the source code 

level.  The COM+ family shares CORBA’s failure to address the complete spectrum of 

heterogeneity and lack of assistance in correlating and resolving differences in real-world 

entity models.  Finally, the COM+ family requires prior knowledge of remote system 

methods in order to utilize their functionality and requires modification to existing 

systems not developed in compliance with COM+ standards in order to enable their 

interoperation. 

The third approach, J2EE, presents a competing approach to distributed 

computing to that provided by CORBA and the COM+ family.  J2EE’s strengths include 

its support for both information exchange and joint task execution among federation 

systems, its use of a two-step translation methodology for resolving heterogeneities of 

hardware and operating systems, and its full support provided for both federation 

extension and modification.  Its shortcomings include 1) failure to address the complete 

spectrum of system heterogeneity; 2) lack of capability for assistance in establishing 

correspondence between different models of the same real-world entity; 3) requirement to 

know the server’s name or identifying attributes in order to invoke the server’s methods 

from a client; 4) requirement that both client and server applications be written in Java; 

5) and lack of assistance in defining the translations needed to resolve system 
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heterogeneities outside of the platform independence provided by the Java Virtual 

Machine. 

By contrast the fourth approach, SeeBeyond’s e*Gate Integrator and e*Index 

Global Identifier, addresses each of the eight classes of heterogeneity, although some are 

only partially dealt with.  I was unable to determine from the available literature and from 

communications with company representatives the extent to which heterogeneity of 

hardware and operating systems are able to be resolved.  However it was determined that 

these products provide for only partial resolution of heterogeneity of organizational 

models.  SeeBeyond does provide limited support in correlating different models of the 

same real-world entity on different systems.  Currently this support is limited to the 

correlation of customer ID’s through its e*Index component.  SeeBeyond’s eBusiness 

suite is primarily focused on enabling information exchange among heterogeneous 

systems, but the capability for joint task execution can be provided through the 

application of CORBA, or COM+, or Java RMI capabilities.  However, use of these 

methods incurs the following previously mentioned limitations: 1)  prior knowledge of 

remote system methods required, and 2) modification to existing systems needed if they 

are not originally developed in compliance with the specified standards.  SeeBeyond does 

provide computer-aid to translation development; however, it does not support definition 

of an intermediate representation for translation, relying primarily on the point-to-point 

conversion between specified source and destination representation pairs. 

The fifth approach, the High Level Architecture for modeling and simulation, 

while providing facilities for combining individual computer simulations into larger 

simulations, does little to address most of the limitations identified with previously 

evaluated approaches.  HLA does present an object-oriented model for capturing data 

shared between systems in a federation, increasing the developer’s visibility of system 

interaction.  It also prescribes a publish-subscribe approach to data sharing, requiring 

interconnections between components be established only when one system has data of 

interest to another (or is interested in data from another system).  The two primary 

limitations of the HLA are its capability for information exchange only, and its failure to 

address the possible heterogeneities among federate models of shared data.  The 
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prohibition of direct interaction between federates and the lack of behavioral information 

in the Federation Object Model (FOM) precludes the use of the HLA for joint task 

execution.  Leaving the burden of attribute and parameter interpretation on the federates 

and failing to provide facilities in the Object Model Development Tool to facilitate 

correlation of models or development of translations between different models limits 

HLA’s support for data exchange. 

Finally, the sixth approach, while not providing a distributed computing facility 

such as that offered by CORBA, COM+, or J2EE, or an architecture for combining 

independently developed systems such as that presented by SeeBeyond’s integration suite 

or HLA, XML does provide support for achieving interoperability among independently 

developed systems.  Of the six approaches presented, XML offers the greatest support for 

heterogeneity resolution, addressing, at least partially, five of the eight classes of 

heterogeneity defined in Section II.A.2.  In addition, there are tools available that aid in 

the creation of XSLT stylesheets used for resolving heterogeneities of structure and 

meaning between application data models.  Finally, XSLT can be applied using a 

wrapper or middleware-based approach, reducing the requirement for system 

modification during heterogeneity resolution.  XML defines a mechanism for data 

definition and organization; it does not provide a method for remote invocation of 

methods between applications.  Therefore, its support for heterogeneity resolution is 

limited to the exchange of information between applications.  In addition, XML also 

shares some of the limitations found in the other approaches.  These include failure to 

address the full spectrum of heterogeneities, lack of facilities for correlating different 

models of the same real-world entity, and only partial support for federation extensibility. 

Common limitations of these methods include 1) lack of computer aid for 

determining correspondence among different models of real-world entities involved in 

system interoperation; 2) advanced knowledge of remote system methods required in 

order to access their functionality; 3) modification to an existing system required to 

utilize the methodology if the system is not developed in compliance with the methods’ 

requirements; 4) no support for an intermediate representation definition, resulting in the 

use of point-to-point conversions between representations requiring n(n-1) translations 
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for a federation of n systems; 5) limited capability for application of computer aid for 

translation development.  The Object-Oriented Method for Interoperability (OOMI) 

presented in the following chapters of this dissertation addresses these limitations. 
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III. THEORETICAL FOUNDATION FOR COMPONENT SYSTEM 
OBJECT CORRELATION 

 
 
 
Fundamental to the resolution of heterogeneity among a federation of 

independently developed systems is the identification of the real-world entities that 

reflect the information and operations to be shared among systems.  While the 

information that a system wants to share with other systems is contained in the external 

interface of the component system, identifying the real-world entities involved in the 

interoperation between systems is not simply a matter of identifying the classes defined 

in these interfaces.  Because of potential variations in what different component systems 

might view as important to model about an entity and in how that information might be 

represented, the interoperability engineer must first identify corresponding information 

on the different systems in the federation.  Correlation of classes representing the same 

real-world entity must be accomplished in order to enable information and operation 

sharing.   

This class correlation problem is similar to the query/candidate-component match 

problem faced in retrieving software components for reuse [Ste91, Ngu95, GNM96, 

Her97, ZW93, and ZW95], and the attribute correspondence problem encountered during 

heterogeneous database integration [CHR97, HM99, KM98, LC94, and LC00].  The 

approaches for solving the correlation problem in these various domains are similar.  I 

review a number of these approaches as background for providing an understanding of 

the class correlation method chosen for constructing an interoperability model for a 

federation of heterogeneous systems, the Federation Interoperability Object Model 

(FIOM).  Prior to this review, I first present an overview of the measures of performance 

used to evaluate candidate correlation methods. 

A. CORRELATION MEASURES OF EFFECTIVENESS 
Salton and McGill, as cited in [Ste91], point out six evaluation criteria for 

measuring the performance of information retrieval systems: precision, recall, effort, 

time, presentation, and coverage.  Foremost among the effectiveness measures are 

precision and recall.  In the class correlation context, precision is defined as the ratio of 
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the number of classes correctly correlated and the total number of classes correlated.  

Recall is defined as the ratio between the number of classes correctly correlated and the 

number of correct correlations possible.  Recall indicates how effective the search is- 

what percentage of existing actual correspondences is found.  Precision is an indicator of 

search accuracy- of the correspondences returned how many are correct.  [LC00] 

Effort refers to the amount of physical or intellectual labor required to correlate 

different classes that represent the same entity in the real world.  The required correlation 

effort can be used to compare various correlation algorithms. 

Time generally refers to the elapsed CPU or clock time required for evaluating 

classes to determine if a correlation exists.  Time can also serve as an indirect 

measurement for the correlation effort required. 

Presentation refers to the method in which correlation results are provided to the 

user.  Is a ranked list of potential matches provided?  Can the results be integrated with 

other tools attempting to solve the interoperability problem?  The answer to these and 

related questions can be used to discriminate between potential correlation methods. 

Coverage is a measure of the number of relevant classes that are contained in the 

external interface of component systems of the federation.  In order for two systems to 

interoperate, a sharing of information and/or operations must occur between the systems.  

If the information or operations to be shared are not defined in the external interfaces of 

the two systems, interoperability cannot be achieved.  

These criteria are used to evaluate existing correlation methods to determine their 

suitability for use in the Object-Oriented Method for Interoperability (OOMI) introduced 

in Chapter IV.  Data is not available for all of the correlation measures of effectiveness 

on all of the correlation methods evaluated.  Where available, measure of effectiveness 

data is provided for comparison of the data correlation methods discussed below. 

B. DATA CORRELATION METHODS 
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Whether retrieving information from a database, locating re-usable components 

from a software repository, or identifying sharable information between systems in a 

federation, these applications share a common underlying problem.  That problem is how 

to identify correspondences between information in order to solve the overarching 

retrieval or identification problem.  Methods for establishing information correspondence 



can be classified as classical, specification-based, or involving Artificial Intelligence (AI) 

[Ngu95].  An overview of some of the more relevant data correlation methodologies is 

provided as background for the method chosen for use in the OOMI. 

1. Classical Approaches 
Classical approaches include browsing, keyword matching, and multi-attribute 

search.  A prime advantage of the classical approaches includes the availability of the 

information required for correlation, the relative simplicity of the different approaches, 

and the user’s resultant ability to understand the use of the prescribed methodology.   A 

disadvantage of the classical approaches is that they do not take component behavior into 

consideration, and subsequently don’t achieve high values for precision and recall. 

a. Browsing 
A browser is a general-purpose tool for looking through collections, 

categories, or hierarchies of components.  In its most familiar context browsers are used 

to manually trace through interconnected data sources on the World Wide Web.  In our 

context of trying to determine the interoperability classes for a system federation, a user 

could utilize a browser to examine the component systems’ external interfaces in order to 

identify correspondences between system classes.  Browsers are commonly used and 

offer several advantages- 1) they are easy to understand and to use; 2) they enable a user 

to control the direction of search over an entire collection; and 3) they enable a user to 

determine dependencies between objects.  However, browsers do present several 

disadvantages as well.  First, a browser is a manual approach that is not adaptable for 

automatic data element correlation.  Second, unless a user knows where to look for 

elements to correlate, misses will be likely.  Third, the user won’t know when to stop 

looking.  Fourth, the user must manually inspect data elements to determine if they 

correspond.  Finally, browsers are not suitable for large-scale repositories.  [Ste91] 

b. Keyword Matching 
Keyword matching is a familiar approach used as the foundation for most 

commercial search engines.  The user enters a keyword or series of keywords pertinent to 

the information he is trying to locate and the search engine returns all items containing 

some variation of the entered keyword(s). The chief advantages of keyword search are its 

easy implementation and conceptual simplicity for the user.  Its primary disadvantage is 
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that the number and choice of keywords is crucial to success.  It often takes an 

experienced user to attain the desired results.  As the size of the software base increases, 

the effectiveness of keyword search diminishes.  A tradeoff exists regarding the number 

of keywords used in a query- a large set of keywords results in a loss of recall, whereas a 

small set of keywords results in a loss of precision.  [Her97] 

c. Multi-Attribute Search 
Multi-attribute search includes the faceted classification method of Prieto-

Diez [Pri91] and the full-text information retrieval capability used by the Personal 

Librarian (PL) tool employed by MITRE’s DELTA (Data Element Tool-Based Analysis) 

methodology [BFH+95].  The principle advantage of multi-attribute search is that the 

additional attributes used provide more information for retrieval than would be available 

in a pure keyword search.  Its primary disadvantages are that information classification 

and storage are dependent on the author and/or library administrator, and that different 

people may classify the same information differently, reducing the effectiveness of the 

search.  

(1) Faceted Classification.  The typical classification scheme is 

enumerative- all possible classes are predefined and a component is classified according 

to the nearest fit to one of the predefined classes. In Prieto-Diaz’ faceted classification 

scheme [Pri91], classes for categorizing a component are synthesized by selecting 

predefined keywords from a number of faceted lists. 

A facet is formed by grouping terms into related subject areas.  A 

faceted scheme may have several facets.  To classify a component using the faceted 

scheme, one would select from each facet the term that best describes the component.  

Null values are allowed if no term in a facet describes the component.  The resultant list 

of terms is the facet descriptor for the component.  

For example, to classify the title “Structured Systems 

Programming” using a faceted approach and the following predefined facets, 

 
Entities- {designs, programs, structures, systems} 

Activities- {analysis, design, evaluation, programming} 
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would result in the descriptor {systems, programming} for our example title. 

As depicted in Figure III-1, Prieto-Diaz’ faceted approach consists 

of three principle elements- the faceted scheme, a thesaurus, and a conceptual distance 

graph.  For each software component σ, a descriptor dσ is composed consisting of ordered 

terms (Tij) from each facet.  The thesaurus provides a list of synonyms Sijk for each 

concept term Tij.  The conceptual distance graph is used to measure similarities among 

terms.  Two or more facet terms are related to general concepts, called notions, through 

weighted edges. Similarity between terms is computed by measuring the closest path 

between them.  The conceptual distance is equal to the path weight between two terms.  

 

 

 

Figure III-1. Three Elements of Faceted Approach (From [Pri91]) 

 

During component retrieval, a query descriptor is created by 

selecting valid terms from the faceted scheme to describe the component desired.  

Concept ambiguity is reduced through use of a thesaurus.  If there is no match for the 

query descriptor, a new descriptor is created using closely related terms according to the 

distances in the conceptual graph.  A new search is then conducted using the modified 

descriptor.  Matches on the new descriptors will retrieve components that are closely 

related to the component described by the original query descriptor. 

Prieto-Diaz compared the recall and precision values obtained 

using his faceted classification scheme on a prototype system with those of a retrieval 
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system not organized by a classification scheme.  His experiments revealed a four-fold 

improvement in the precision/recall ratio for the prototype using faceted classification. 

Although faceted classification offers improvements in precision 

and recall over non-faceted retrieval systems, it does have its limitations.  Chief among 

these limitations is the requirement for a knowledgeable librarian to classify stored 

components and maintain the software repository.  This includes update and maintenance 

of the classification schemes and thesauri.  Inherent in the approach is that classification 

is a largely manual, labor-intensive methodology.  A final shortcoming is that faceted 

scheme effectiveness is limited for component retrieval from broad, heterogeneous 

collections.  Its capability is geared more toward domain-specific collections where the 

number of facets and terms can be minimized.  [Pri91] 

d. Classical Approach Applicability to Interoperability Correlation 
Problem 

The advantage of such classical approaches as browsing, keyword 

matching, and multi-attribute search include the availability of the information required 

for correlation, the relative simplicity of the different approaches, and the 

understandability of the prescribed methodology.  The main disadvantage of the classical 

approaches is that they do not take component behavior into consideration, and 

subsequently don’t achieve high values for precision and recall.  Of the three approaches, 

keyword matching is believed to have the greatest applicability to the interoperability 

correlation problem.  Section VI.B discusses incorporation of keyword matching into the 

OOMI IDE. 

2. Formal Specifications 
Formal specification approaches include syntax-based methodologies, semantics 

based techniques, and approaches using a combination of both syntactic and semantic 

methods.  The main problems with the use of formal specifications deal with the practical 

problems of writing component and query specifications and the time required to conduct 

semantic matching.  Specification writing involves formal techniques and notations that 

the average designer may not be familiar or comfortable with, although the techniques 

involved generally only require a foundation in discrete mathematics.  Time problems 
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stem from the fact that semantic matching techniques require the use of computationally 

intensive theorem proving approaches. 

a. Syntax Based Approach 
The syntax based approach attempts to match a query to a candidate 

component based on a components’ composition and structure.  Zaremski and Wing 

introduced an approach that uses syntax information in terms of a component’s signature, 

to locate reusable components from a software base [ZW93]. 

(1) Signature Matching.  Zaremski and Wing [ZW93] address 

the correlation problem in the context of software reuse.  They introduce signature 

matching as a means of locating reusable components in a library for subsequent retrieval 

and adaptation for use in a desired application.   They consider two kinds of software 

components, functions and modules, for which they define the type and degree of 

signature matching expected for the reuse context.  

A signature for a function is its type.  A function type can either be 

a type variable or a type operator applied to other types.  Type operators are either built-

in operators or user-defined operators.  When searching a library for a function that 

satisfies the needs of a specified application, the system designer defines a query in terms 

of the types he requires the function to contain.  Matching a user-defined query to a 

function in the library is done based on a comparison of the types defined for the query 

and the types defined for a library function. 

For function matching, Zaremski and Wing provide a definition for 

an exact match between a query and a library function as well as several relaxations that 

can be used to determine a partial match when an exact match doesn’t hold.  One type of 

relaxation is provided in terms of the generalization/specialization of a query where either 

a more general library function can be found for the query, or a function that is a 

specialized version of the query can be found in the library, respectively.  Other 

relaxations allow matches to occur between a query and a library function where the 

order or form of a type expression defined for the function is different from that of the 

query.  Relaxations can be combined to increase the set of library functions retrieved by a 

query. 
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Function mapping serves as the basis for providing matching 

between modules.  The signature used for module matching is an interface, consisting of 

a multi-set of user-defined types and a multi-set of function types.  For a match between a 

query and a library module to occur, there must be a correspondence between the query 

function types and the library module function types.  In practice it is sufficient to check 

to see if function types match- if function types match, the modules must match- there is 

no need to check user-defined types.  This correspondence can be either an exact match 

or a partial match, where not every function in the query matches every function in the 

library module.  In addition, for each function match, the match can either be exact or 

relaxed as previously discussed. 

The authors’ work provides a set of primitive function matches that 

can be combined to form the most practical types of matches between a query and a set of 

library functions or modules.  The basic technique is applicable to finding both functions 

and modules to match a user’s query.  Although their work is principally directed toward 

the retrieval of reusable components from a library, the same principles may be used in 

other applications as well, such as consolidating heterogeneous databases or resolving 

modeling differences in a system federation. [ZW93] 

b. Semantics Based Approach 
Semantics based approaches attempt to use behavior to establish 

correlation between elements.  Behavioral information can be captured in terms of a set 

of conditions an element must satisfy or a set of equations describing the dynamic 

behavior of a component or operation.  Semantics based techniques can be utilized alone 

or in conjunction with syntactic based methods in a multi-level approach to solving the 

correlation problem. 
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(1) Specification Matching.  As discussed in [ZW93], syntactic 

information may be used to provide an idea of whether two components are related.  

However, understanding the dynamic behavior of a component, or its semantics, is key to 

determining whether a component provides the functionality required for use in a 

specified context (reuse problem), or whether two elements in a database refer to the 

same real-world concept (database integration problem), or whether objects may be 

shared between systems in a federation (interoperability problem).  Zaremski and Wing 



extend their syntax-based correlation efforts to address the use of semantics for 

determining if two software components are related.  Their specification matching 

process supplements their signature matching process in determining the relationship 

between two components. 

In [ZW95] the authors address specification matching as relates to 

both functions and modules.  The dynamic behavior of a function is characterized in 

terms of pre- and post-condition specifications for each function asserted using first-order 

predicate logic.  A match between two functions is determined by evaluating the logical 

relationship between the pre- and post-condition specifications for the two functions.  

There can be varying degrees of matching, from exact matches where the pre- and post-

conditions of the two functions are equivalent, to implied matches where if the pre- and 

post-condition of one function hold (are true), then the post-condition of the other 

function holds also.  

Function matching is defined in terms of pre/post match or 

predicate match.  In pre/post match the pre- and post-conditions of two functions are 

compared; predicate match also involves the relationship between the pre-condition and 

post-condition for each function.  For predicate match, satisfaction of the pre-condition 

for a function implies satisfaction of the post-condition for the function whereas in 

pre/post match this implication does not necessarily hold. 

For pre/post matches, the strictest match is exact pre/post match; 

for this type of match the pre-conditions and post-conditions of the two functions are 

equivalent.  In terms of measures of effectiveness, exact pre/post match results in the best 

values for precision (function satisfying exact pre/post match with a query exhibits the 

same dynamic behavior specified by the query).  However exact pre/post match performs 

poorly in terms of recall (functions that may exhibit the desired dynamic behavior under 

specified conditions may be overlooked). 

The next strictest match is plug-in match: if the pre-condition of 

the first function is satisfied, then the pre-condition of the second function is also 

satisfied, and if the post-condition of the second function is satisfied then the post-

condition of first function is also satisfied.  Plug-in match provides increased recall over 
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exact pre/post match; it will return functions that can be “plugged-in” for another 

function- as long as the pre-conditions of the original function holds, then a plug-in 

replacement will be guaranteed to meet the post-condition of the original function. 

Following plug-in match in terms of relaxations is plug-in post 

match: if the post-condition of the first function is satisfied, then the post-condition of the 

second function would also be satisfied for functions meeting plug-in post match.  Plug-

in post match again increases recall; as long as the post-condition of the plug-in 

replacement holds, then the replacement will be guaranteed to meet the post-condition of 

the original function.  Finally, the weakest match criterion is weak post match: if the pre- 

and post-condition of a matched function are satisfied, then the post-condition of the 

original function will be satisfied. 

For predicate matches, the strictest match is exact predicate match: 

the predicates for two functions are logically equivalent.  Exact predicate match is also 

less strict than exact pre/post match.  The next strictest predicate match is generalized 

match; generalized match allows the specification of a matched function to be more 

general than the function being matched.  The least strict predicate match is specialized 

match; specialized match allows the specification of a matched function to be more 

specific than the function being matched. 

Determining a match between modules is based on the function-

match foundation.  There are two types of module matches- exact module match and 

generalized module match.  For exact module match the number of functions in each 

module must be the same.  Each function in a module must match one and only one 

function in the other module being compared using one of the function matches defined 

above.  Generalized module match allows one module to match a subset of another 

module where, for the subset of functions matched, there is a one-to-one relationship to 

the functions of the other module in terms of one of the above function matches.  [ZW95] 

c. Approach Using Component Syntax and Semantics 
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Steigerwald, Nguyen, Herman, and Goguen et al. used a combination of 

syntactic and semantic search techniques for addressing the software component retrieval 

problem.  Steigerwald [Ste91] introduced the use of algebraic specifications for defining 

the syntax and semantics of components in a software base in order to facilitate 



automated retrieval using a similarly specified query as the search key. His query by 

consistency method was extended by Nguyen [Ngu95] and further described by Goguen 

et al. [GNM96], resulting in a multi-level filtering approach to the software component 

search problem.  Herman [Her97] further improved Nguyen’s semantic matching 

techniques, resulting in an increase in search precision without a loss of recall. 

(1) Query by Consistency.  Steigerwald [Ste91] takes a formal 

specification approach to retrieving source code modules from a component re-use 

library.  His approach uses both syntactic information derived from a module’s 

specification, and semantic information describing the dynamic behavior of a module, to 

retrieve components based on a user’s query.  Syntactic and semantic information are 

provided in terms of a specification written using Luqi’s Prototype Specification 

Description Language (PSDL) [LBY88] augmented with an algebraic specification 

written in OBJ3.  OBJ3 is an order-sorted-logic based functional programming language 

introduced by Goguen [GW88]. 

In Steigerwald’s approach, reusable components are maintained in 

a data store together with a PSDL/OBJ3 specification defining the syntax and semantics 

of the component.  A designer wishing to locate a component in the data store defines a 

query that captures the desired component structure and behavior in terms of a 

PSDL/OBJ3 specification.  This specification serves as a key for locating corresponding 

components from the data store.  Both the query and library component specifications are 

normalized, much as is done in hashing, in order to improve the efficiency of the search.  

The normalization process is performed separately for the syntactic and semantic 

information in order to optimize the search process.  Syntactic normalization is 

performed using the component/query interface defined by the PSDL specification.  

Semantic normalization transforms the signature and axioms in the OBJ3 portion of the 

specification. 

The syntactic and semantic normalization processes may proceed 

in parallel.  However, syntactic matching should precede semantic matching in order to 

take advantage of the faster, less computationally demanding syntactic matching 

algorithms to reduce the candidate pool.  Then, the slower, more computationally intense 
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semantic routines are used to further reduce the list of candidates and to rank order 

potential query matches.  Syntactic matching provides an advantage over semantic 

matching in terms of speed and recall; however, semantic matching offers increased 

precision in locating candidate components that satisfy a query. 

Search for a component can be divided into two parts: 

representation and search.  Representation provides a model of the component sought in 

order to make locating the desired component easier.  Search algorithms exploit the 

component representation to facilitate locating the component.  A tradeoff exists between 

representation and search- the more sophisticated the representation the easier the search 

and vice versa. 

The normalization process is used to provide the representation 

used for search.  The ideal normalization process “would transform the axioms of two 

semantically equivalent objects into syntactically equivalent forms” [Ste91, p.35].  Since 

the axioms used to describe the semantics of a component are provided in terms of a 

formal language in the author’s approach, it is possible, using semantics preserving 

transformations, to automatically rewrite a set of axioms to an alternative form with the 

same meaning.  The ideal approach would apply transformations to both the query and 

library components resulting in a normal form, which could then be compared for 

equivalency.  However, due to infinite variations possible in expressing component 

semantics, even if you could expect to get two semantically equivalent specifications 

syntactically close, you would need help from a matching algorithm to determine if the 

two were in fact equivalent. 

The search process involves the use of theorem proving techniques 

to show that a query specification and component specification are equivalent.  The 

formal specification for a query and a component contain a set of axioms describing the 

behavior of the query or component.  Taken together, the axioms of the query constitute a 

theory for which theorem-proving techniques can be used to show equivalency with a 

candidate component.  However, this can be very difficult to do automatically in the 

general case; in addition, the process is slow and not guaranteed to terminate. 
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Steigerwald proposes a two-phased approach to reusable 

component retrieval.  First, in the syntactic search phase, a comparison is made between 

the numbers and types of parameters found in the PSDL specification for a query and 

those for a candidate component.  This information is used to quickly rule out 

components that cannot possibly satisfy the query.  The author provides a set of simple 

tests that can be used to eliminate components in the software base as possible matches 

for a query.  Examples of the tests include: 

 

• If the number of input parameters in a query is not equal to the number of input 

parameters in a candidate component, then the component can be eliminated from 

consideration. 

• If the number of output parameters in the query is greater than the number of 

output parameters in a candidate component, then the component can be 

eliminated from the search. 

• If the query has state variables defined, but there are no state variables in the 

candidate component, then the component can be eliminated as a possible match.  

[Ste91] 

 

These tests provide the necessary conditions for match between a component and a query, 

however, they are not sufficient to determine whether a component is a syntactic match 

for a query. 

The second phase, the semantic search phase, uses a formal 

specification of the syntax and semantics for both the components in the software base 

and the queries used to retrieve a desired component.  The specification is provided using 

the OBJ3 algebraic specification language.  Called “query by consistency” (QBC), the 

semantic search phase compares the specifications of a query and a component in the 

software base by evaluating the equivalence of reduced algebraic terms taken from the 

query and candidate component specifications. 

Given a query specification, QBC first builds a set of example 

terms from the specification signature.  Then, using axioms in the query, the example 
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terms are reduced to normal form.  Term reduction involves application of the rules of a 

specification’s axioms to a term until no further reductions are possible, resulting in 

normal form for the term.  Similar reduction is performed on terms for components in the 

software base.  Finally, the results of the reduction are compared in order to eliminate 

some candidate components and to rank order those that remain. 

QBC uses Prolog as the tool to find the mappings between a query 

and a candidate component.  Each operator definition in the signature of a query and 

candidate component is transformed into a set of Prolog predicate expressions.  Predicate 

expressions derived from the component specifications are treated as Prolog facts during 

the mapping phase and predicate expressions from the query specification are combined 

to form a Prolog rule.  Prolog is then used to provide a mapping from the query rule to 

the candidate component.  With some query/component combinations, many mappings 

may be possible.  The QBC algorithm must check every possible mapping- a task that is 

worse than exponential in the worst case. 

Following the generation of mappings between a query and a 

candidate component, each mapping is evaluated to determine a score by which the 

potential query/candidate component matches are ranked.  In order to evaluate each 

mapping, a test set is generated from the signature defined for the query.  The test set is 

used to build an Input/Output (I/O) list.  The I/O list consists of a list of input terms that 

represent the query’s operators and arguments for those operators, and a list of output 

terms that are the result of reduction of the input terms to normal form using the axioms 

of the query. 

The names of operators and sorts and the positions of parameters 

in the signature of the query will most likely be different than the corresponding 

operators, sorts, and parameters in the candidate component.  Therefore, the terms must 

be transformed to the candidate component’s domain using one of the mapping functions. 

The I/O list term output comparison will be performed in the domain of the candidate 

component.  Therefore it is necessary to transform both the inputs and the outputs to the 

component domain. 
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Next, the reduced input and the transformed query domain output 

are compared using a theorem proving method referred to as inductionless induction.  By 

using a sequence of rewrite rules the query input and transformed query output are 

compared to determine if they are behaviorally equivalent.  A simple scoring mechanism 

is used to tally the results of the inductionless induction comparison for a particular 

mapping.  The score given to a particular map is the ratio of the number of I/O pairs that 

are behaviorally equivalent to the total number of I/O pairs reduced.  From these scores 

potential mappings between a query and a list of candidate components can be ranked. 

Steigerwald does not provide any values for measuring the 

effectiveness of his QBC method in retrieving components from a software base.  He 

cites the unavailability of a suitably populated library from which to determine 

meaningful measures.  However, in the next review, Nguyen does provide a comparison 

of his method to Steigerwald’s QBC for a small sample software base. 

(2) Multi-Level Filtering.  As initially reported by Nguyen 

[Ngu95] and reiterated by Goguen et al. [GNM96], Steigerwald’s query by consistency 

method had several limitations.  First, his syntactic matching process is limited to total 

syntactic matches (no partial matches allowed) and the use of unparameterized 

components.  Further elimination of components not satisfying the query could be 

accomplished if additional information besides the number of inputs, outputs, and state 

variables for a component were considered.  Second, the use of Prolog to find mappings 

between the signature of a query and a candidate component is computationally 

expensive- the time required to determine all possible mappings could be greater than 

exponential.  Third, the semantic basis of QBC is not well developed.  Evaluating 

patterns with variables gives limited information about the semantic satisfaction of a 

syntactic match.  In his approach it is possible to have semantically equivalent 

specifications for which pattern evaluation would give conflicting answers, giving the 

appearance that a query and a component are not semantically equivalent.  Finally, he 

provides limited support for generic components- the system does not have the ability to 

extract features from a user query and use them to instantiate a stored generic component 

in order to perform QBC.  Generic parameters must be mapped to predefined sorts. 
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Nguyen introduced a multi-level filtering approach to software 

component search that integrates keyword, syntactic, and semantic matching techniques.  

Nguyen’s multi-level filtering methodology provides the following improvements over 

Steigerwald’s approach: 1) it provides a ranking of software components that potentially 

satisfy a query, therefore enabling partial query matches; 2) it uses a multi-level filtering 

approach using both syntactic and partial semantic information about components to help 

eliminate obvious mismatches; 3) it focuses on comparing formal specifications of 

components using ground equation test cases as queries, a less computationally expensive 

process than Steigerwald’s use of Prolog; 4) it provides a method to automatically 

translate standard programming notation into the formal specification notation used for 

queries (vice having to program queries using formal specification notation); 5) it allows 

generic modules in the software base; 6) it addresses the structuring of the software base 

to increase efficiency of the search; 7) it allows user’s to provide the selection criteria for 

controlling the search and displaying retrieved components; and 8) it provides user 

information to aid query reformulation for improving subsequent searches if no match to 

a query is found [Ngu95, GNM96]. 

Nguyen’s software component search methodology acts as a series 

of increasingly stringent filters applied to a list of candidate components with regards to a 

user query.  Components are first filtered using signature matching by comparing the 

signature of a query to the signature of components in the software base.  This is done by 

mapping the type and function symbols of the query into corresponding type and function 

symbols of candidate components.  

After signature matching, semantic matching is applied to rank 

components on how well they satisfy the equations in the query.  In the semantic 

matching process, the query is used to derive equations that are logical consequences of 

the query specification.  These equations are then translated using previously developed 

signature matches to a set of equations whose proof is attempted using the candidate 

specifications.  Candidate components are then ranked according to the success of the 

candidate specification proof process.  
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The syntactic matching approach uses three levels of syntactic 

filtering: 1) profile filtering is used to partition the software base, as an aid to signature 

matching, 2) keyword filtering reduces the candidate component set, and 3) signature 

matching “finds the maps that translate the type and function symbols of the query into 

the corresponding type and function symbols of the candidate components”  [Ngu95 

p.15]. 

For signature matching, each component in the library has an 

associated algebraic specification consisting of a signature for the component and a set of 

equations used to specify the component’s behavior.  The component signature consists 

of a set of sorts (types) defined for the component and a set of functions on those types.  

The set of equations for a component specifies properties that the functions of the 

component should satisfy.  Signature matching attempts to find a mapping between the 

sorts and functions of a query and the sorts and functions of a library component. 

The effort required for matching the sorts and functions of a query 

to those of a candidate component is computationally expensive.  Profile matching is 

introduced as a means for reducing the library component search space in order to speed 

up the signature matching process.3  The number and organization of sorts in a 

component’s functions are used to define a profile for each operation.  Nguyen defines an 

operation profile as: 

 

“1. The first integer is the total number of occurrences of sorts. 

2. If the total number of sort groups, N, is greater than 0, then the second to 

(1 + N)th integers are the cardinalities of the sort groups, in descending order. 

3. The (2 + N)th integer is the cardinality of the unrelated sort group. 

4. The (3 + N)th integer is: 

0 if the value sort is different from any of the argument sorts; and  

1 if the value sort belongs to some sort group” [Ngu95 p.20]. 

                                                 
3   Steigerwald’s approach looked at all possible matches between a query and a 

component signature; Nguyen introduces profile matching in order to reduce the number 
of possible mappings that must be evaluated by signature and semantic matching 
algorithms. 
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The composition of all the operation profiles for a component 

provides a profile for that component. The profiles for a group of components in a library 

are used to separate the library into partitions of components containing the same profile.  

By comparing profiles for a query and a component it can be determined whether the 

component matches the query.  The degree of match between a component and query is 

given as a ProfileRank, which provides a numerical value based on the number of 

operational profiles for a query that match the operational profiles for a component, given 

as: 

ProfileRank(BQ, BC) = |BQ ∩ BC| / |BQ| 
 

where BQ represents the profile for a query and BC a component profile.  Again, 

ProfileRank provides a measure of recall for the profile matching algorithm. 

The keyword rank function is used to measure how close the 

keywords of a query, KwQ, are to the keywords of a component, KwM: 

 
KeywordRank(KwQ, KwM) = |KwQ ∩ KwM| / |KwQ| 

 
The keyword rank function measures recall by determining the ratio of the number of 

keywords present in both the query and a candidate component to the number of 

keywords in the query. 

Finally, the signature-matching algorithm is performed on only 

those components in the partition whose profile matches that of the query.  Signature 

matching determines how close the signature of a query matches the signature of a 

component.  The result of executing the signature matching algorithm for a candidate 

component is a SignatureRank for the component, defined as the ratio of the number of 

elements in the signature of the component that match the signature of the query to the 

number of elements in the signature of the query. 

 
SignatureRank (V, Q) = |V.Σ| / |Q. Σ|, 

 
where “Q. Σ is the signature of the query and V. Σ is the subsignature of Q. Σ that is 

actually matched by V” [Ngu95 p.28]. 
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The choice of software base components that match a query can be 

further refined using semantic filtering.  A semantic validation procedure tests equations 

from the query for satisfaction in the candidate component specification.  First, a set of 

ground equations is formed from the query specification.  Ground equations, that is 

equations whose terms have no variables, are used to reduce the complexity required for 

checking candidate component matches to a query.  Then, the query ground equations are 

tested for satisfaction in the candidate component specification as follows.  First, the 

query ground equations are translated using the signature match information between the 

query signature and candidate component signature determined during the signature 

match process.  Then, the translated ground equations are evaluated against equations in 

the candidate component specification.  If the translated ground equations are satisfied, 

i.e., evaluation of each equation results in the identity relation, then the candidate 

component satisfies the query. 

Using the results of the semantic validation procedure, a ranking 

can be computed for candidate components in the software base that satisfy a query.  The 

ranking is computed on an operation by operation basis, based on whether a signature 

match is defined for the operation and if so whether the semantic validation procedure 

results in a successful match between the query and the component operation.  The 

ranking takes into consideration the possibility of partial satisfaction of a query’s ground 

equations by a component.  Finally, the SemanticRank of the component is computed as 

the sum of the ranking for the operations defined for the component. Then, given the 

SemanticRank of a component, the author’s compute its overall ComponentRank as 

follows: 

ComponentRank = KeywordRank * ProfileRank * SignatureRank * SemanticRank 
 

Thus, the designer is provided an ordered list of components from which to evaluate for 

possible application in his implementation.  

Nguyen provided an evaluation to compare the performance of 

Steigerwald’s signature-matching method to his approach that added profile matching to 

the signature matching process.  From his limited evaluation of matching a query against 

a library of six candidate components, he reported a fifty-six-fold improvement in the 
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time required for semantic matching with profile matching included vice that required 

when the algorithm did not include profile matching. 

Nguyen also performed an evaluation of the precision and recall 

values attainable when searching a sample library for components matching a given 

series of queries.  When searching for components that were an exact match to the given 

query, his approach yielded very high precision values (1.0 average) but low recall 

numbers (average of .58).  When the search was expanded to include partial matches as 

well, recall values improved to an average of 1.0 while precision values fell to .36 on 

average.  A third scenario, which he termed the “Medium KPS scenario”, provided more 

balanced precision and recall results, resulting in average values of .81 and 1.0 

respectively.  Nguyen found that his exact match search compared favorably with Prieto-

Diaz’s faceted approach [Pri91] for precision but was outperformed slightly for recall.  

However, he found that his Medium KPS scenario had a better recall performance but a 

lower precision than the faceted approach [Ngu95]. 

(3) Improved Multi-Level Filtering.  Nguyen’s multi-level 

filtering approach combines keyword matching, syntactic matching and semantic 

matching to retrieve reusable components from a software base.  Syntactic matching is 

further decomposed into two phases: profile filtering and signature matching.  Herman 

[Her97] introduces improvements to the resolution of syntactic profiles in order to 

increase precision during profile filtering, without a loss in recall.  In addition he 

presented improvements to the internal representation of syntactic profiles in order to 

improve the time and space requirements for profile representation.  Finally, he provided 

improvements to the signature matching process that reduced the time required to find 

valid signature maps. 

Herman’s multi-level filtering model is presented in Figure III-2.  

The multi-level filtering process consists of two main activities: syntactic matching and 

semantic matching, with syntactic matching further broken down into profile filtering and 

signature matching.  The purpose of the multi-level filtering approach is to eliminate as 

many candidate components in response to a query using earlier, less computationally 

expensive approaches before producing a ranked set of potential matches using the 
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semantic matching process.  He also enables manual inspection of the intermediate 

results in order to further eliminate candidates from consideration. 

 

 

 

Figure III-2. Multi-level Filtering Model (From [Her97]) 

 
Herman proposed improvements to the definition of an operation 

profile defined by Nguyen in order to increase the precision offered by his approach.  His 

proposal included improvements to both the resolution of the profile and the space and 

time required to store a profile and search through a collection of profiles to determine a 

match to a query. 

Improvements in profile resolution provide the ability to better 

distinguish between syntactically similar software components.  Herman offered two 

approaches to increasing the resolution of a component profile: 1) increase the number of 

possible discriminates for a profile property and 2) increase the number of properties 

included in a profile.   

Herman’s first improvement to Nguyen’s profile definition was to 

modify the value of the last integer in the profile to represent the number of occurrences 

of the value sort in the operation’s signature.  Nguyen had defined the last integer as a 

true/false indicator of whether the value sort was also included as an argument sort for 

the operation.  His second improvement was to include an additional property in the 

profile to capture the number of times the type sort of a component (assuming the 

component represented an abstract data type) was present in an operation.  The third 

profile resolution improvement was the addition of a count of the frequency of 

occurrence of five predefined sorts (boolean, character, string, integer, real) in the 
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signature of an operation.  In summary, Herman’s improvements resulted in the following 

update to the profile definition provided in [Ngu95]: 

 

1. The first integer is the total number of occurrences of sorts. 

2. If the total number of sort groups, N, is greater than 0, then the second to 

(1 + N)th integers are the cardinalities of the sort groups, in descending order. 

3. The (2 + N)th integer is the cardinality of the unrelated sort group. 

4. The (3 + N)th integer is the number of occurrences of the type sort in the 

operation’s signature (for abstract data types). 

5. The (4 + N)th through (8 + N)th integers are the number of occurrences of the 

predefined sorts (boolean, character, string, integer, real) in the operation’s 

signature. 

6. The (9 + N)th integer is the number of occurrences of the value sort in the 

operation’s signature.  [Her97] 

 

In addition to the profile resolution improvements offered by 

Herman, he also enhanced the profile storage and retrieval efficiency through two 

measures: 1) the use of a large integer to represent a profile and 2) the use of a profile 

lookup table for storing component profiles.  The large integer representation uses the 

digits of a large (double precision) integer to represent an operation profile vice the set of 

integers used by Nguyen.  The profile lookup table assigned a unique integer lookup ID 

to an operation profile so that a component profile could be represented as a collection of 

lookup ID’s vice a multiset of operation profiles, each of which consists of a sequence of 

integers. 

In addition to providing syntactic profile resolution enhancements 

and time and space improvements in the storage and use of syntactic profiles, Herman 

reduced the time required to find valid signature maps by improving the signature 

matching process.  These enhancements include: 1) ordering profiles lexicographically to 

help constrain the search during operation matching; 2) reduction of the search space by 

attempting to match operation outputs before considering input sorts; and 3) using the 
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preservation rules of predefined types to reduce the number of input sort permutations 

that must be considered. 

By ordering profiles lexicographically, his approach attempts to 

match the sorts of smaller operations before matching the sorts for larger operations.  

This potentially results in an improvement of the matching process because smaller 

operations constrain the number of matching possibilities and therefore can contribute to 

an early reduction of the search space. 

By matching output sorts prior to input sorts, the numbers of input 

sorts that have to be matched in an operation are reduced.  If an output sort for a query is 

matched to a specific output sort in the candidate component, then that matching must 

hold for the query sort when used as an input parameter as well.  Operations where the 

matching does not hold can be eliminated from consideration.  In addition, once a query’s 

output sort is matched to the output sort of a candidate, that sort cannot be matched to a 

different output sort in the candidate.  This further reduces the search space. 

Finally, the type preservation rules of predefined types enables 

further pruning of the number of potential matches that must be considered by the 

signature matching and semantic matching routines.   The type preservation rules require 

that in order for a query operation to match a candidate component operation, the input 

type of a query must be either the exact type or a subtype of the input type in the 

candidate, and the output type of the query must be either the exact type or a supertype of 

the output type in the candidate.  Failure to meet this requirement will eliminate a 

potential match from consideration. 

Experimental validation of Herman’s suggested improvements 

supported his hypothesis in four areas: 1) software base resolution; 2) profile filtering 

performance; 3) profile improvements’ impact on signature matching; and 4) signature 

matching performance enhancements.  A basic premise of the recommended profile 

enhancements is that increasing the profile resolution will enhance the resolution of the 

software base by increasing the number of partitions in the software base and 

consequently reducing the number of components per partition.  As a result, query match 

precision should increase without reducing recall.  Herman’s measurement of the number 
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of software base partitions shows a 65% gain in the number of partitions due to 

implementation of his recommended profile enhancements. 

As a measure of profile filtering performance, Herman 

hypothesized that his recommended profile enhancements would result in a reduction in 

the number of components returned as candidate matches to a query.  Experimentation 

validated this hypothesis, resulting in as much as a 79% decrease in the number of 

returned components when all three profile enhancements were implemented. 

A concise quantification of the effect profile improvements had on 

signature matching was not made in the thesis.  However, a look at one query match 

attempt showed that profile improvement implementation enabled a valid signature match 

to be obtained where it was not attainable without the suggested profile improvements 

and that generally, matches using the improved profile fared at least as good as without 

the improvements. 

An evaluation of the signature matching performance 

enhancements was conducted by counting the number of nodes that passed or failed the 

output matching and predefined type matching tests.  Failed nodes represent nodes that 

are pruned, so an increase in the number of failed nodes indicates improved signature 

matching performance.  Herman provided a measurement of the number of nodes that 

passed and failed the enhanced signature matching tests for each of the various profile 

resolution improvements.  However, it is not possible to discriminate between failure 

increases resulting from the signature matching enhancements and those resulting from 

the profile resolution improvements.  [Her97] 

d. Formal Specifications Applicability to Interoperability 
Correlation Problem 

Zaremwki and Wing [ZW93, ZW95], Steigerwald [Ste91], Nguyen 

[Ngu95], Goguen et al. [GNM96], and Herman [Her97] introduced the use of formal 

specifications in an attempt to exploit behavioral aspects for correlation.  As mentioned 

earlier, the main barrier to the use of formal specifications involves the practical 

problems of writing component and query specifications and the time required for 

conducting semantic matching.  Perhaps as a result of the difficulty involved in writing 

formal specifications, the legacy systems targeted for integration generally lack any type 
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of formal specifications for describing system behavior.  However, type signatures are 

generally available, and aspects of the syntactic matching parts of this group of methods 

could be applied.  On the other hand, the strengths of syntactic matching are not well 

exploited in typical interoperability applications because the explicit type structures in 

these applications are not very rich- fields are usually limited to numbers and strings and 

there is not enough structure to provide much discrimination between alternatives.  

Therefore, in order to best take advantage of this approach for determining class 

correspondence, formal specifications would need to be created for systems lacking their 

use.  The time and effort required to augment existing systems with formal specifications 

describing their behavior would outweigh any savings gained from the introduction of 

computer aid to the solution of the correlation problem. 

3. Artificial Intelligence Approaches 
In addition to the classical and formal specification approaches used for 

establishing correspondences between data elements and for software component 

retrieval, the use of artificial intelligence techniques have been applied to the correlation 

problem.  Two of the more promising methods investigated involve 1) the exploitation of 

natural language information in correlating data elements, and 2) the use of neural 

networks to learn the similarities among data given instances of that data.  

a. Natural Language Techniques 
Foremost among the natural language techniques is the use of full-text 

information retrieval technology to extract syntactic and semantic information needed to 

establish correspondence between data elements.  When integrating software systems, 

much if not most of the information required to use formal specification approaches is not 

available for legacy systems.  However, a good deal of syntactic and semantic 

information is available in the component system data dictionaries and data description 

languages as textual information.  Full-text information retrieval technology can be used 

to exploit the information contained in these documents for data correlation. 
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(1) Full-text Information Retrieval.  DELTA (Data Element 

Tool-Based Analysis) [BFH+95] provides a methodology to correlate data elements in 

existing legacy systems.  The methodology involves the use of a set of prescribed tools to 

perform the correlation.  The approach is centered on the use of full-text information 



retrieval technology and exploitation of the relationships between data elements.  The 

methodology outlines a bottom-up process whereby component system data elements are 

correlated to corresponding data elements in another system or to those contained in a 

pre-defined standard. 

DELTA utilizes a step-by-step process employing a number of 

commercially available software tools for inputting, organizing, searching, correlating, 

and storing data.  The first tool, a full-text information retrieval system called Personal 

Librarian (PL), is used to match corresponding data elements in different systems.  PL 

uses information readily available from the legacy systems’ data dictionaries and 

database tables to compare items between systems.  In addition, DELTA exploits 

relationships between data elements to help validate the correspondences returned by PL.  

The relationships between data elements are captured in the form of IDEF1X (Integration 

DEFinition [for information modeling] First Edition Extended) logical data models.  For 

the task of modeling the data, DELTA uses ERwin, one of several commercial off-the-

shelf (COTS) tools available for producing the IDEF1X models.  DELTA also employs 

commonly available personal computer (PC) office automation products such as 

Microsoft Excel and Microsoft Word.  Finally, PC Access Tool (PCAT), distributed by 

the DoD, provides access to data elements currently being standardized by the defense 

community. 

The DELTA process consists of a sequence of four primary steps 

used to correlate data elements between systems: 

1. System metadata is gathered, organized, and reformatted in order to identify 
the data elements to be reconciled for each system. 

2. Data elements of one system are correlated with those of other systems or 
with standardized elements. 

3. Relationships between data elements are used to validate the data element 
correspondences returned in the previous step. 

4. A composite model of the federation data elements is created after 
correspondences between data elements have been validated. 

 
Data Extraction.  There are a number of sources for obtaining a 

system’s metadata, with the data dictionary and data definition language (DDL) being 

two of the most common.  The data dictionary should contain the data element name, 
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data type, length, narrative description, and sample values for each data element.  Data 

element names and the tables in which they are found can also be easily extracted from 

the system’s DDL.  The DDL is used to define a database’s conceptual schema 

containing the files, their attributes, and the types of those attributes comprising the 

logical structure of the database [Gra87].  The system’s DDL may be more accurate and 

up-to-date than the data dictionaries because they are extracted directly from the 

operational system.  

Source code may also provide information regarding a system’s 

data elements.  In addition, other sources for input data can include: 

• Copies of major system displays or reports, 
• Requirements documents, 
• User manuals, and 
• Database design models. 

 
The system analyst extracts the data elements for the system from 

the above listed metadata source documents.  After extraction, the input data is 

reformatted and reorganized prior to beginning the initial correlation step using the 

Personal Librarian (PL) software.  Reformatting removes extraneous material from the 

data dictionary and DDL files and formats the information for input to PL.  

Reorganization of the data involves sorting the data elements into subject categories 

similar to the facets introduced by Prieto-Diaz [Pri91].  These subject categories are 

referred to as basic concept areas (BCAs) in DELTA.  The subject categories can be 

ascertained either from the standard data element set being used or from review of the 

data element’s system documentation. 

Data Element Correlation.  The correlation problem involves 

taking each data element as it is represented in one of the systems and find the 

corresponding data element in the standard model or in each of the other systems.  The 

difficulty in accomplishing this task is that each system uses different words and phrases 

to express the same idea; thus data element names and definitions can vary between 

systems.  The Personal Librarian (PL) tool can be used to help locate potential matches, 

even though the concepts are expressed differently. 
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DELTA’s most fundamental contribution to data element 

correlation is the use of full-text retrieval technology in its methodology.  PL’s full-text 

retrieval technology accepts natural language queries for locating corresponding data 

elements.  When provided a user entered query, PL provides a candidate list of 

corresponding elements, ranks them, and displays a snapshot of the associated metadata 

for each candidate, automatically “floating” those elements that most closely resemble 

the query input to the top of the list.  Parameters used by PL for its ranking algorithm 

include the number of query words that match the item and how frequently each word 

appears in the entire full-text database being searched.  Because PL accepts natural 

language queries, no special syntax or query language is required for query formulation.  

While the authors did not provide any specific guidance for query formulation, similar 

techniques to those used in keyword searches on most commercial search engines should 

enhance search effectiveness.  These include using key words or phrases from the data 

dictionary or DDL that describe the element being matched, and first attempting the 

search using a specific query to minimize the number of potential matches prior to 

expanding the search with a more general query. 

PL supports Boolean searching as well as operators that search for 

words that are next to or near one another to be used in queries.  In addition to using a 

conventional query, PL provides an additional concept search feature.  Concept search 

functions similarly to Prieto-Diaz’ conceptual distance graph, returning terms similar to 

the query in addition to those providing a specific match [Pri91].  For example, with a 

concept search, entering the word cloud would not only return elements containing the 

word cloud but would also return elements containing words such as forecast, wind, 

ceiling and temperature that are related to clouds. 

Additional features of PL allow you to define a thesaurus for 

commonly used search words, to see a dictionary of all the words in a database, to match 

words with similar spellings (fuzzy search), to use wild cards, and to reuse words from 

previous searches.  The inclusion of a thesaurus capability is particularly useful for 

attempting to correlate data elements where acronyms and abbreviations are used.  

 116



Correspondence Validation.  To validate the correspondences that 

are identified in the correlation process, a comparison must be made of the relationships 

between the candidate entities and other entities surrounding them in their respective data 

models.  Only by ensuring that the entities are used in the same manner can the analyst be 

assured of the correspondence between two data elements.  The relationships between 

entities are expressed in the form of an entity-relationship diagram used to model a 

system’s data elements.  DELTA uses the IDEF1X data-modeling standard to represent 

the entity-relationship diagram.  Logic Works’ ERwin tool provides the capability to 

create, refine, and compare data models depicted in IDEF1X.  These entity relationships 

are then used to validate correlation assumptions and conclusions. 

Composite Model Creation.  After data element correspondences 

have been validated against the IDEF1X entity-relationship diagrams using ERwin, a 

composite data model for the correlated items can be manually created.  Reasons for 

creating such a composite model include the desire to consolidate multiple databases into 

one or the need to identify standardized data element definitions across a number of 

systems.  Models are first reconciled within the active system to which they belong and 

then to a core system (if defined).  The composite model can be used to define a 

“standard” representation for the real-world entities involved in system interoperation.  

This “standard” representation can then be used as the intermediate representation in a 

2-step translation process, reducing the number of required translations from n(n-1) to 2n 

for a federation of n systems.  The reconciled data model can also be used to submit a 

data element standardization package to propose additional data standards or alteration of 

existing standards if desired.  

Measures of Effectiveness.  The initial correlation process using 

PL is an iterative process where the system analyst submits a query for a data element, 

reviews the data element correspondences and then modifies the query or utilizes a 

different search method to locate additional elements related to the given entity.  Because 

of the user-driven, iterative nature of the process, the authors did not provide 

measurements of precision and recall for the correlation process.  They did provide a 

measure of the effort required for the overall DELTA process.  A single analyst was able 
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to correlate approximately 200 data elements across four databases in one work week- the 

equivalent of approximately 5 data elements per hour or 12 minutes per attribute.  

Additional experimentation conducted in [CHR97] reported correlation times of 

approximately 15 minutes per attribute.  [BFH+95] 

b. Neural Networks 
Li and Clifton focus on “identifying corresponding attributes in different 

DBMSs that reflect the same real-world class of information [LC00, p.51].”  Their goal is 

to develop a semi-automated integration procedure that uses database metadata to extract 

the semantic information necessary to identify attribute correspondences.  Database 

semantic information can be contained within the database model, within the conceptual 

schema, as part of application programs, or within the mind of the user.  Available 

database metadata includes attribute names, schema design, constraints, and data 

contents.  The authors’ approach concentrates on using the conceptual schema and 

database model and contents to extract the necessary semantic information; they don’t 

attempt to parse the application programs or “pick the user’s brains.” 

The authors introduce SEMantic INTegrator (SEMINT), a neural network 

based tool that utilizes database metadata to identify attribute correspondences.  SEMINT 

uses database management system (DBMS) specific parsers to extract metadata (schema 

design, constraints, and data content statistics) from databases to be integrated.  The 

metadata forms a signature describing the attributes of the databases.  The attribute 

signatures are used to train a neural network to recognize the signatures and thus identify 

corresponding attributes based on similar attribute signatures.  Neural networks can learn 

the similarities among data directly from instances of the data and, without prior 

knowledge of any data relationships or patterns, empirically infer correspondences 

between data attributes. 

The attribute correspondence process used by SEMINT involves a five-

step procedure.  The following overview of the semantic integration procedure is 

presented in Figure III-3 below. 
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Step 1. Metadata in the form of schema information and data content statistics is 

extracted from an individual database using DBMS specific parsers. 



Step 2. The metadata is normalized as a series of attribute vectors containing values of 

data content-based discriminators for each attribute.  The attribute vectors are 

input to a self-organizing map algorithm that categorizes attributes into cluster 

centers according to their proximity to other attribute vectors on the map. 

Step 3. The cluster centers are used to train a three-layer backward propagation neural 

network to recognize attribute categories; 

Step 4. The trained neural network is provided the attribute information from another 

database from which it provides the similarity between each input attribute of 

this new database and each attribute category from the original database used to 

train the network. 

Step 5. System users check and confirm the similarity results returned by the trained 

network.  [LC94, LC00] 

 

 

Figure III-3. Semantic Integration Procedure (From [LC94, LC00]) 

 
(1) Metadata Extraction Using DBMS-Specific Parsers.  There 

are three levels of metadata that can be automatically extracted from a database: attribute 

names (dictionary level), schema information (field specification level), and data contents 

and statistics (data content level).  Most of the past work in attribute correlation has 

focused on metadata available at the dictionary level.  However, due to problems with the 

use of non-English attribute names and the use of synonyms and homonyms, approaches 

relying on the use of attribute names for identifying correspondences have been largely 

unsuccessful.  SEMINT avoids the use of dictionary level metadata and focuses on 
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utilizing metadata at the field specification level and data content level (average number 

of occurrences, variation, groupings, etc.). 

Field specification level information used by SEMINT includes 

data types, length, scale, precision, and the existence of constraints, such as primary keys, 

foreign keys, candidate keys, value and range constraints, disallowing null values, and 

access restrictions.  Data contents can be used to supplement the name and schema 

information for determining attribute correspondences. 

Data content information includes statistics on data contents such 

as the maximum, minimum, average, variance, coefficient of variance (square root of 

variance divided by the average), existence of null values, existence of decimals, scale, 

precision, grouping and number of segments.  For numerical fields, the actual values in 

the fields are used to compute these statistics.  For character fields, the statistics are 

computed based on the number of bytes used to store the data rather than the actual value 

of the data in the fields. 

Other semantic information such as security constraints and 

behavior constraints such as the use of cross-references, views, clusters, sequences, 

synonyms, and dependencies can also be extracted from the system data dictionary.  A 

complete list of metadata discriminators used in SEMINT is provided in Table III-1.  

SEMINT automatically extracts schema information and constraints from the database 

catalogs and computes statistics on the data contents using database queries. 

(2) Normalization of Metadata.  Inputs to the neural network 

used by Li and Clifton are required to be in the range of [0.0, 1.0], indicating whether a 

neuron is triggered or not [LC00].  Therefore the values assigned to the metadata 

discriminators of an attribute must lie in the range of [0.0, 1.0], even though the actual 

value of the discriminator can be of different types with different value ranges.  

Consequently, input values for SEMINT’s neural networks must be normalized to fit 

within a range of [0.0, 1.0]. 

For each attribute, information for the various discriminators is 

extracted from the database, transformed into a single format, and normalized.  For each 

database, the parser outputs a set of vectors, one for each attribute, which consists of a list 
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of normalized discriminator values for that attribute.  These vectors represent the 

signature of the attribute in terms of its schema design and data content patterns. 

 

Table III-1. Metadata and Data-Content-Based Discriminators Used in SEMINT 
(From [LC00]) 

 
 

(3) Classifier.  A classifier algorithm is used to cluster 

attributes from a single database into related categories.  Grouping information in a 

database into clusters reduces the problem size and resultant neural network training time 

by reducing the number of nodes in the network.  SEMINT uses an unsupervised learning 

algorithm, an adaptation of Kohonen’s Self-Organizing Map (SOM) algorithm [Koh87], 

to classify attributes within a single database.  The discriminator values from the attribute 

vector are used to plot each attribute in an N-dimension space, where N is equal to the 

number of discriminators used.  Clusters are defined by grouping attributes whose plot 

falls within a predefined radius defined by the user.  Cluster composition was determined 

from the user’s input of the number of clusters to be created in Kohonen’s original SOM 

algorithm; Clifton and Li’s modification employs a user-entered cluster radius rather than 

the number of clusters to determine cluster composition.  The classifier outputs a vector 

of cluster center weights for each cluster that is computed by taking the average of the 

discriminator values for the attribute vectors contained within a cluster. 
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(4) Category Learning and Recognition Neural Networks.  The 

cluster center weight vectors output by the classifier are used as training data for a back-

propagation network.  Then, when the trained neural network is provided signatures of 

attributes from another database, it indicates if there are any matches between the clusters 

output from the classifier algorithm and attributes in the other database.  The neural 

network provides a value for each cluster in the network indicating the similarity between 

the attribute and the target database cluster.  Output values range from 1.0 for “equal” to 

0.0 for completely dissimilar. 

(5) Experimental Results.  The authors presented their results 

from using SEMINT to provide attribute correspondences for three separate database 

integration problems.  In the first problem, they used SEMINT to correlate attributes 

from similar databases from the same organization that contained a good deal of common 

information.  For this application they achieved recall values of 100% and precision 

values between 90 and 100%.  Similar results were obtained in an experiment that split 

one large database into two halves and then attempted to correlate the two halves, 

achieving recall values of close to 90% and precision values of approximately 80%.  

However, in a third experiment, conducted on two diverse databases containing related 

but not common information, results were much less favorable.  In this experiment, 

which is closer to the application expected for establishing correspondences between 

component system classes in a federation, the authors achieved a recall of 38% and a 

precision of 20%.  Additional experimentation conducted in [CHR97] reported recall 

values in the 20% range. 

c. Applicability of Artificial Intelligence Approaches to 
Interoperability Correlation Problem 

The two artificial intelligence based correlation approaches investigated, 

the exploitation of natural language information in correlating data elements, and the use 

of neural networks to learn the similarities among data from field specifications and data 

content, appear to offer the greatest potential for application to the interoperability 

correlation problem.  Personal Librarian’s (PL’s) full-text retrieval capability is well-

suited to correlating component system classes given the text-based nature of the 

semantic information contained in legacy system data dictionaries and data definition 
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languages [BFH+95].  Similarly, SEMINT’s use of neural networks to determine 

semantic correspondence of data elements based on metadata and data element instances 

makes it equally suitable for use in the interoperability context [LC94].  These two 

approaches are complimentary- PL is based on informal descriptions and interpretations 

of data elements and SEMINT is based on the formal structure of data, including data 

types and constraints.  Therefore, a combination of the two approaches should provide 

greater correlation success than either one alone. 

C. SUMMARY 
In this chapter I provided the foundation for selecting the methodology for 

correlating component and federation representations of the real-world entities involved 

in the interoperation of a federation of systems.  Correlation measures of effectiveness 

were provided for evaluating candidate correlation approaches.  Relevant existing 

correlation methodologies were then reviewed to provide an understanding of the various 

approaches and to provide an evaluation of the methodology against the prescribed 

correlation measures of effectiveness, where possible.  Chapter VI discusses the selection 

of the correlation methodology for use in the OOMI IDE and provides details of the 

implementation of the approach used for correlating component and federation 

representations of the real-world entities involved in the interoperation among systems. 
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IV. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY 
(OOMI) 

 
 
 

A. INTRODUCTION 
As stated in Chapter I, the goal of this research is to provide a computer-aided 

methodology to aid in the resolution of differences among independently developed 

heterogeneous systems in order to enable system interoperability.  Interoperability was 

defined in Section I.A as the capability of systems to exchange information and to jointly 

execute tasks [LISI98, Pit97].  The information exchanged between interoperating 

systems consists of data used to capture the state of the real-world entities in the problem 

domain being modeled by systems in the federation.  The joint execution of tasks reflects 

the capability of one system to employ the services of another.  These services define the 

behavior of the real-world entities being modeled.  Thus, interoperation can be 

characterized in terms of the real-world entities whose state information is exchanged 

between systems or whose services are invoked by another system. 

The model used to portray a real-world entity can vary among independently 

developed systems.  By their nature, two development teams charged with independently 

modeling the same problem domain would most likely produce different models of the 

real-world entities involved due to diverse perspectives of the problem, the use of 

equivalent constructs to model the problem environment, or dissimilar objectives for the 

resulting models [BLN86].  These modeling differences must be resolved if the systems 

are to interoperate. 

B. METHODS FOR RESOLVING HETEROGENEITY AMONG SYSTEMS  
Holowczak and Li provide a survey of methods for resolving heterogeneity in 

multidatabase systems [HL96].  The authors discuss four techniques for representing the 

correspondence among heterogeneous database attributes as well as the means for 

resolving the heterogeneity between attribute representations.  The covered 

methodologies are: 
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1. The use of tables to capture attribute correspondences between heterogeneous 
databases; 

2. The use of formulae to represent the correspondence between attributes in one 
database and those of another; 

3. An ontological representation of attribute correspondence; and  
4. A modeling approach to resolving heterogeneity issues. 
 
In the table-based approach, corresponding attributes are listed in a row of the 

table, with each column in a row representing a different database representation.  

Additional columns in the correspondence table can be used to capture any conversions 

required to resolve differences between representations.  Each table row forms a tuple, 

which represents a static correspondence between attributes in different databases. 

Tables are straightforward to implement and are adequate for addressing simple 

attribute correspondences and for resolving naming, format, and structural heterogeneity.  

The major disadvantage with the use of tables is their inability to deal with higher arity 

attribute correspondences (e.g. one-to-many) and other forms of heterogeneity, such as 

heterogeneity of scope. 

Attribute correspondences can also be represented by using a formula that maps 

attributes in one database to an attribute in another.  The formula-based method is an 

extension of the previously discussed correspondence table and as such is capable of 

addressing the heterogeneity issues covered by the table-based method.  In addition, 

functions defined by such formulas are able to resolve conflicts between atomic and 

composite keys as well as resolve heterogeneity resulting from missing or conflicting 

data.  The main disadvantage of the formula-based method is its failure to assure round-

tripping in the conversion between attribute representations; the inverse of a function may 

lose precision enabling it to only operate accurately in one direction.  If the formula does 

not define a one-to-one function, the inverse can be multi-valued.  Forcing a one-to-one 

relationship by choosing an arbitrary element of the set of possible inverse images is what 

causes loss of precision. 

Another method for resolving heterogeneity in a multidatabase system is through 

use of an ontology to provide correspondence among database attributes.  An ontology is 

“a knowledge base consisting of entities and relationships with abstraction, inference and 

typing mechanisms” [HL96, p.8].  The ontology serves as a global schema to which 
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attributes in component databases are associated via syntactic and semantic relationships.  

The associations between the global schema and component databases serve to enable 

translation between the component and global schema model of an attribute. 

The main benefit of the ontological representation method is its ability to resolve 

heterogeneities of scope, level of abstraction, and temporal validity.  The primary 

drawback to this method is related to the time and effort needed to construct the required 

ontology.  

The modeling approach uses a high-level, typically object-oriented, model to 

encapsulate a component database.  Heterogeneities between component databases are 

resolved by methods that enable translation between attribute representations.  The 

methods may use a table, function, knowledge base, or other approach to resolve the 

heterogeneity issues. 

An object-oriented modeling approach has the potential to address all forms of 

heterogeneity through the definition of custom methods.  Naming differences are 

resolved by using attribute aliases.  Format differences are handled by encapsulating the 

component database.  Identity conflicts and missing or conflicting data can be addressed 

by approximating or interpolating values or by alerting the user.  Structural, scope, level 

of abstraction, and temporal validity differences can be resolved by custom methods. 

Table IV-1 compares the four methods used for resolving representations in 

multidatabase systems.  Each method is shown with a brief description and general 

advantages and disadvantages of the approach. 

Although the methodologies defined above have been used for mapping attribute 

correspondences and for resolving heterogeneity among databases, they can also be 

applied for achieving interoperability among a federation of independently developed 

systems.  That is the context being investigated by the research covered in this 

dissertation. 
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Table IV-1. Comparison of Multidatabase Heterogenity Resolution Methods 
(after [HL96]) 

Method 

 

Table Formulae Ontology Model 
Description Attribute 

correspondence 
represented as 
tuples 

Attribute 
correspondence 
represented as 
functions 

Attribute 
correspondence 
represented as 
Articulation 
axioms 

Attribute 
correspondence 
represented in 
data model 

Advantages Ease of 
implementation 

Capable of 
addressing 
complex 
heterogeneity 
and limited 
inference 
ability 

Flexible and 
can address 
complex 
heterogeneity.  
High inference 
ability 

Flexible and 
can address 
complex 
heterogeneity 

Disadvantages Inability to deal 
with complex 
heterogeneity 

Loss of 
precision 
problems 

Requires a pre-
existing robust 
ontology. 

Limited 
shareability 

 

C. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY (OOMI)4 
Upon evaluating the methods for resolving heterogeneity among multidatabase 

systems covered in Section IV.B against the context of the problem being investigated by 

this dissertation, an approach that included aspects from the formulae, ontology, and 

model methodologies was determined to provide the greatest benefit in resolving 

heterogeneities among a federation of independently developed systems.  The resulting 

methodology, named the Object-Oriented Method for Interoperability (OOMI), is based 

on providing a model of the real-world entities whose state and behavior are shared 

among systems.  The methodology includes a Federation Ontology to provide a 

canonical representation for the shared information, and utilizes formulae-based methods 

for resolving differences between component and canonical representations of the shared 

information. 

Due to the potential of a modeling approach to address all forms of heterogeneity, 

and the following benefits of Object-Oriented Analysis and Design (OOAD), it was 

                                                 
4 Portions of this material originally appeared in a paper entitled Using an Object 

Oriented Model for Resolving Representational Differences between Heterogeneous 
Systems [YBG02]. 
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determined that an object-oriented modeling approach offered the greatest promise for 

achieving system interoperability when compared with the other approaches for 

heterogeneity resolution.  OOAD provides principles of abstraction, information hiding, 

and inheritance that can be employed in the resolution of differences among 

independently developed heterogeneous systems [KA95, WCS00]. 

As the basis for achieving interoperability among systems, I define an object-

oriented model that captures the shared state and behavior for a federation of systems.  

The resulting Federation Interoperability Object Model (FIOM) captures differences in 

modeling of the real-world entities whose state and behavior are shared among systems 

and provides the means for resolving such differences.  Principal objectives of the FIOM 

are to: 

• provide an abstract model of the real-world entities whose state and behavior are 
shared among federation systems, hiding the details of how that information is 
modeled on different systems, except when required for difference resolution; 

• include the different component system models of the shared real-world entities 
with their abstract model in order to facilitate difference resolution; 

• provide the means for resolving modeling differences among systems; and 
• be extensible; adding new real-world entities whose state and behavior are shared 

among systems in the federation, or including new component system models of a 
real-world entity, should not affect contents or relationships in an existing model. 
 
The FIOM presents a model of the shared state and behavior and provides a basis 

for achieving interoperability among systems.  Construction of such a model for a large 

federation of systems could be a time-consuming, error-prone process.  In order to reduce 

the time, cost, and potential for errors involved in building such a model, the use of 

computer aid is desired during model construction.  The OOMI Integrated Development 

Environment (OOMI IDE) provides such computer aid to the interoperability engineer for 

constructing a FIOM for a specified federation of systems. 

Finally, the ultimate objective in resolving modeling differences among 

independently developed heterogeneous systems is to enable system interoperation.  The 

strategy employed for meeting this objective is to use the FIOM constructed prior to 

runtime for a specified federation of systems to enable runtime resolution of system 

heterogeneities.  Resolving heterogeneities during runtime implies an automated 

approach that utilizes the FIOM for achieving system interoperability.  The OOMI 
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achieves this objective through employment of one or more OOMI translators that act as 

intermediaries between federation components. 

Figure IV-1 provides an overview of the components of the OOMI.  Details of the 

FIOM are discussed in Section IV.C.1.  An introduction to the OOMI IDE is provided in 

Section IV.C.2 with details provided in Chapter V.  The OOMI translator is introduced in 

Section IV.C.3 and covered in detail in Chapter VII. 
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Figure IV-1. Object-Oriented Method for Interoperability (OOMI) Key Components 

 
1. Federation Interoperability Object Model (FIOM) 
Before looking at the specific components of the FIOM used for capturing the 

real-world entities whose state and behavior are shared between federation systems, a 

closer look at the types of modeling differences that can occur in heterogeneous systems 

presented in Section II.A.2 is provided.  This examination will provide insight into the 

components used to model a real-world entity in the FIOM and supply a foundation for 

understanding the methods used for resolving heterogeneities among component system 

models of those entities. 

a. Categories of Modeling Differences 
Section II.A.2 provides a classification of modeling differences that can 

arise in heterogeneous systems.  Further examination of this classification suggests an 

additional categorization of the eight classes of heterogeneity cited.  Heterogeneities of 

scope, level of abstraction, and temporal validity all relate to differences in what real-

world-entity characteristics are modeled by different systems.  Heterogeneities of 

hardware and operating systems, organizational models, structure, presentation, and 
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meaning all relate to differences in how these characteristics are modeled by different 

systems.  When two systems use different features to model the same real-world entity, 

then the two systems can be said to have different views of the real-world entity.  When 

two systems use the same set of features to model the same real-world entity, they have 

the same view of the real-world entity.  Two systems that have the same view of a real-

world entity can nevertheless model the same feature differently.  In this case, the two 

systems are said to provide different representations of the modeled feature. 

To help further distinguish the difference between a view and the 

representation of a view, the following definition is provided.  A view is defined in the 

OOMI as a tuple (Αε, Ωε) of attribute and operation sets used to model the state and 

behavior, respectively, of the real-world entities involved in system interoperation.  

Specifically: 

• Αε  signifies the attributes Αε1, … , Αεn contained in the model of a real-world 
entity that are exposed to other models in the federation. 

• Ωε  signifies the operations Ωε1, … , Ωεn defined in the real-world entity model 
that are available for invocation by external models in the federation. 
 

Each operation Ωε can include parameters p1, … , pn used to convey the information 

required to perform the operation’s computation or that are returned as a result of the 

computation. 
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In order for two systems to have the same view of a real-world entity, 

there must be no difference in scope, level of abstraction, or temporal validity between 

the two systems’ models of the entity.  In the context of the above definition, this means 

that at some level of aggregation each attribute set and each operation set of each system 

must be in one-to-one correspondence. That is, the attributes Aε of each system must be 

in one-to-one correspondence at some level of aggregation; the operations Ωε of each 

system must be in one-to-one correspondence at some level of aggregation; and similarly 

for parameters p1, … , pn of corresponding operations.  This does not necessarily mean 

that at the atomic level of attribute or operation definition that there is a one-to-one 

correspondence, but that such a correspondence can be provided through aggregation of 

one or both systems attributes and operations.  For example, suppose two systems each 

contain an attribute that provides the geographic coordinates of a real-world entity.  



System A’s position attribute uses a latitude/longitude coordinate system and includes 

components latitude and longitude.  System B’s location attribute uses the MGRS 

coordinate system and includes components UTM Zone, MGRS Northing, and MGRS 

Easting.  While there may not be a one-to-one correspondence between System A’s 

latitude and longitude and System B’s UTM Zone, MGRS Northing, and MGRS Easting, 

such a correspondence does exist between System A’s position and System B’s location 

attributes. 

In addition to the requirement for a one-to-one correspondence between 

attribute and operation sets, corresponding operations must be behaviorally equivalent for 

two systems to have the same view of a real-world entity.  In the interoperability context 

provided in this dissertation, behavioral equivalence of two operations is defined in terms 

of a black box view.  Two operations are considered behaviorally equivalent if, over the 

complete set of possible inputs, they produce equivalent outputs from equivalent inputs 

when executed in the same environment.  Input and output equivalence is defined in 

terms of the attribute and operation correspondence discussion provided in the previous 

paragraph.  The correlation methodology discussed in Chapter VI can be used to assist 

the interoperability engineer in determining whether two inputs or two outputs are 

equivalent.  Operation behavioral equivalence determination is identified as an area for 

future research and is left to the interoperability engineer. 

To help illustrate this problem, suppose a federation of four autonomously 

developed military systems contained information about an enemy ground combat 

vehicle.  From Figure IV-2 it can be seen that Systems A and B include information 

about the vehicle’s type, position, time, and range.  System C captures type, position, and 

time information on the entity, and System D utilizes type, position, time, and status to 

describe the vehicle.  For Systems A and B there is a one-to-one correspondence between 

attributes ΑεA1 (type), ΑεA2 (position), ΑεA3 (time), and ΑεA4 (range) from System A and 

attributes ΑεB1 (type), ΑεB2 (position), ΑεB3 (time), and ΑεB4 (range) from System B.  

Thus, Systems A and B are said to provide the same view of the ground combat vehicle.  

Because the attributes exposed in the external interface for system C (ΑεC1 (type), ΑεC2 

(position), and ΑεC3 (time)) do not exhibit a one-to-one correspondence with the attributes 
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exposed by Systems A or B, System C is considered to provide a different view of the 

real-world entity than that provided by Systems A and B.  Similarly, the attributes 

exposed by System D’s model of the ground combat vehicle (ΑεD1 (type), ΑεD2 

(position), ΑεD3 (time), and ΑεD4 (status)) provide a third view of the real-world entity.  

This example illustrates differences in view of a real-world entity among system models 

based on the attributes exposed in the system’s external interface (Αε); information 

contained in exposed operation signatures (Ωε), as well as operation behavioral 

differences must also be evaluated in order to determine whether two models provide the 

same view of a real-world entity. 
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Figure IV-2. Differing Views of Real-World Entity 

 
Even if two systems provide the same view of the entity being modeled, 

there may still be differences in the way their attributes, operation names, and operation 

parameters are represented in terms of heterogeneity of hardware and operating systems, 

organizational models, structure, denotation and meaning.  This difference in 

representation is illustrated in Figure IV-3 by systems A and B.  Even though these 

systems both have the same view of our real-world entity, i.e. both capture the type, 

position, time, and range for the entity; they each contain differences in the way that 
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information is represented- as a result of heterogeneities caused by hardware and 

operating systems, organizational models, structure, presentation, or meaning.  For 

example, System A refers to our entity as an Armored Combat Vehicle and names its type 

attribute acvType.  System B refers to our entity as a Mechanized Combat Vehicle and 

names its type attribute mcvType.  Additionally, System A captures the entity’s position 

as acvPosition recorded using its latitude/longitude coordinates, and the time of the 

vehicle data entry as acvTime using Greenwich Mean Time (GMT) as the reference; 

whereas System B records entity mcvLocation using Military Grid Reference System 

(MGRS) coordinates and records mcvTime using Local Mean Time (LMT).  Finally, 

System A records the vehicle’s combat range as acvRange measured in nautical miles 

(nm) whereas System B records the same quantity as mcvRadius measured in kilometers 

(km).  Determining whether two models of a real-world entity that provide different 

representations for the entity’s attributes and operations present the same view is a task 

that will be discussed further in Chapter VI.  Figure IV-3 illustrates the different views of 

the example real-world entity and the various representations provided for each view. 
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time
range

View 2
name
type
position
time

View 3
name
type
position
time
status

 

Figure IV-3. Differing Real-World Entity View Representations 
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b. FIOM Composition 
It is expected that for a federation of heterogeneous systems, a number of 

real-world entities will be involved in the interoperation among systems.  This collection 

of real-world entities is used to define a Federation Interoperability Object Model 

(FIOM) under the OOMI.  The FIOM serves to capture 1) the real-world entities involved 

in system interoperation, 2) the different views a component system model might provide 

of these entities, 3) the different ways those views may be represented, and 4) the 

mechanisms used for resolving differences in view and representation seen in component 

system models. 

(1) Capturing Real-World Entities and Views.  The real-world 

entities whose state and behavior information are shared among a federation of 

interoperating systems are modeled in the OOMI as a Federation Entity (FE).  The FE 

provides an abstract model of the information being shared while hiding the details of 

how that information is modeled on different systems.  Each FE is composed of one or 

more Federation Entity Views (FEVs) used to distinguish differences in scope, level of 

abstraction, or temporal validity of the attributes and operations used for modeling the 

same real-world entity on different systems.  As mentioned in Section IV.C.1.a, 

differences in operation behavior between systems would also result in defining different 

FEVs for the real-world entity being modeled.  Figure IV-4 depicts the OOMI archetype 

for a real-world entity defining the interoperation among systems, an FE, illustrating the 

relationship between an FE and its constituent FEVs.  As can be seen in the figure, an FE 

is composed of one or more FEVs, each of which provides a different view of the 

modeled real-world entity.  Additional FEV components shown in the figure will be 

discussed in the next two sections. 

 135

(2) Capturing Federation Entity View (FEV) Representations.  

In addition to differences in what characteristics are chosen to model a real-world entity, 

different component systems may also represent the same characteristics differently.  As 

discussed in Section IV.C.1.a, these differences may be due to heterogeneities of 

hardware and operating systems, organizational models, structure, presentation, and 

meaning found on the different systems.  In order to capture these differences, an FEV 

itself includes a number of components.  The first FEV component seen in Figure IV-4, 



the Federation Class Representation (FCR), is used to reflect the “standard” (as defined 

by the interoperability engineer) representation used by the federation for an entity’s 

view.  A “standard” representation is introduced to reduce the number of translations 

required for resolving representational differences among systems. 
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1

FCR-CCR_Translation

translate(ccrN:CCR_Schema):FCR_Schema
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FCR_Schema CCR_Schema
1 *

FCR CCR
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FCR_Schema CCR_Schema
1 *

FCR CCR
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FCR_Syntax CCR_Syntax

FCR_Semantics CCR_Semantics

1
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1

FCR-CCR_Translation

translate(ccrN:CCR_Schema):FCR_Schema
translate(fcrN:FCR_Schema):CCR_Schema

FCR_Schema CCR_Schema
1 *

FCR CCR

FEV

FE

 
Figure IV-4. OOMI Federation Entity (FE) Archetype 

 
The typical approach to resolving modeling differences among 

systems involves the use of a number of bilateral translators between systems to be 

integrated [RRS96].  For a federation of n systems, this approach requires the 

specification of n(n-1) translations.  An alternative to the use of bilateral translators 

involves the use of an intermediate representation for the real-world entities whose state 

and behavior information are shared among systems.  Under this approach the shared 

information would first be converted from the source representation to the intermediate 

representation and then from the intermediate representation to the destination 

representation.  The use of an intermediate representation reduces the number of required 

translations from n(n-1) to 2n for a federation of n systems.  The FCR provides the 

intermediate representation for translation between a source and destination system. 
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To support standardization of this intermediate representation, the 

terminology and representation used to define the FCR is based on an ontology 

containing the federation-sanctioned representation of an entity’s state and behavior.  

This ontology can be developed specifically for a federation of systems or it can be 

derived from a domain-specific or industry-wide standard such as the Defense 

Information Systems Agency’s (DISA’s) Defense Information Infrastructure (DII) 

Common Operating Environment (COE) XML Registry [DII01] or the Defense Modeling 

and Simulation Office’s (DMSO’s) Functional Description of the Mission Space (FDMS) 

namespaces [FDM01]. 

The second FEV component seen in Figure IV-4, the Component 

Class Representation (CCR), is used to capture the possible alternative component system 

representations of an entity’s view.  The CCR defines the component system model of a 

real-world entity and serves as the source or destination representation for translation 

between models.  Whereas each FEV will contain exactly one FCR that provides the 

“standard” representation of that view, each FEV may contain many CCR’s depending on 

the number of component system models of a particular real-world entity view.  As will 

be shown in Appendix A, there may also be FEV’s that do not have a CCR defined for 

them.  As depicted in Figure IV-4, an FEV contains exactly one FCR and may include 

zero or more CCRs. 

Figure IV-5 illustrates the CCRs and FCRs created for the system 

A through D representation of the example ground combat vehicle previously introduced 

in Figure IV-3.  Note that each FEV contains a single FCR whereas an FEV may contain 

more than one CCR- the groundCombatVehicle_View1 FEV includes CCRs armored-

CombatVehicle_CCR and mechanizedCombatVehicle_CCR corresponding to System A’s 

and System B’s representation of the view, respectively.  FCR and CCR components and 

their relationships, to be discussed in the following paragraphs, have been omitted from 

the figure to enhance understandability. 
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groundCombatVehicle_View1_FCR armoredCombatVehicle_CCR

groundCombatVehicle_View1

groundCombatVehicle_View2_FCR armoredMilitaryVehicleCCR

groundCombatVehicle_View2

groundCombatVehicle_View3_FCR armoredFightingVehicle_CCR

groundCombatVehicle_View3

groundCombatVehicle

mechanizedCombatVehicle_CCR

 
Figure IV-5. Example Views of a Federation Entity with Federation and Component 

Class Representations 

 
The FCR and CCR are each actually a composition of related 

components.  These components contain information 1) defining the attributes and 

operations that characterize the state and behavior of the federation or component models 

of a real-world entity, and 2) for identifying correspondences among models. 

Identifying Federation and Component Model Attributes and 

Operations.  As depicted in Figure IV-6, the first of these components, the FCR Schema, 

is used to capture the attributes and operations that characterize the state and behavior of 

a federation model of a real-world entity.  In general, a schema is a summarized or 

diagrammatic representation of something.  In our usage, the FCR Schema contains the 

names and type signatures of the exposed attributes (Αε) and operations (Ωε) used to 

provide the “standard” representation for the attributes and operations that define a 

particular view of a real-world entity. 

Similarly, the CCR Schema is used to capture the attributes and 

operations that characterize the state and behavior of a component model of a real-world 

entity.  The CCR Schema contains the names and type signatures of the exposed 

attributes (Αε) and operations (Ωε) used by a specific component system to model a real-

world entity from the problem domain.  The prime difference between an FCR Schema 

and a CCR Schema is in how they are used; the FCR Schema is used to characterize the 

state and behavior of the “standard” model of a real-world entity while the CCR Schema 
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is used to provide the same characterization for various component system models of an 

entity. 

 

FCR_Syntax CCR_Syntax

FCR_Semantics CCR_Semantics

1

1

1 1
1

1

FCR_Schema CCR_Schema
1 *

FCR CCR

FEV

 
Figure IV-6. OOMI Archetype for Federation and Component Class Representations 

(FCR and CCR) Showing Constituent Schema, Syntax, and Semantics Classes 

 
Whereas the FE, FEV, FCR, and CCR are conceptual constructs 

that may or may not have corresponding components in an FIOM implementation, it is 

expected that both FCR and CCR Schemas would be modeled as classes in an 

implementation of the FIOM.  Information exchange and joint task execution among 

systems is effected through use of FCR and CCR Schema instances to transport 

information between systems. 

Figure IV-7 depicts the FCR and CCR Schemas for the example 

groundCombatVehicle_View1 FEV from Figure IV-5.  Similar FCR and CCR Schemas 

for groundCombatVehicle views 2 and 3 have been omitted to enhance readability. 

Attribute names for state information used in the FCR and CCR Schemas are taken from 

Figure IV-3.  Operations included with the FCR and CCR Schemas are standard accessor 

and mutator methods for the included attributes.  Additional operations exposed by 

federation and component models of a real-world entity would also be included in the 

FCR and CCR Schemas defined for an FEV.  An association is established between the 

FCR Schema and all CCR Schemas that define the same view of the modeled real-world 

entity. 
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groundCombatVehicle_View1_FCR

armoredCombatVehicle_CCR

groundCombatVehicle_View1

mechanizedCombatVehicle_CCR

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType( )
getPosition( )
getTime( )
getRange( )
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

ArmoredCombatVehicle_CCR_Schema : CCR_Schema
acvType : AcvType
acvPosition : AcvPosition
acvTime : AcvTime
acvRange: AcvRange

getAcvType( )
getAcvPosition( )
getAcvTime( )
getAcvRange( )
setAcvType(AcvType)
setAcvPosition(AcvPosition)
setAcvTime(AcvTime)
setAcvRange(AcvRange)

<<CCR Schema>>

MechanizedCombatVehicle_CCR_Schema : CCR_Schema
mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius: McvRadius

getMcvType( )
getMcvLocation( )
getMcvTime( )
getMcvRadius( )
setMcvType(McvType)
setMcvLocation(McvLocation)
setMcvTime(McvTime)
setMcvRadius(McvRadius)

<<CCR Schema>>

1

1

1

 
Figure IV-7. FCR and CCR Schemas for Example Ground Combat Vehicle 

 

 140

Identifying Correspondences Among Models.  Previous efforts 

toward integrating heterogeneous databases found that a large part of the effort was 

consumed by determining whether two entries in related databases represented the same 

entity [LC94].  An equivalent situation exists in the integration of heterogeneous system 

components.  When presented with a number of systems to be integrated, the 

interoperability engineer must determine when two systems’ models of shared 



information refer to the same real-world entity.  Establishing this correspondence is 

crucial in order for systems to exchange information and operations and is the basis for 

defining the FEs characterizing the interoperation of federation systems. 

In order to assist the interoperability engineer in establishing the 

correspondence between different models of a real-world entity, the FCR and CCRs also 

include syntactic and semantic information used to correlate the “standard” and various 

component system models of the real-world entities defining the interoperation.  This 

information is represented using the components FCR Syntax and CCR Syntax to capture 

syntactic information on the “standard” and component representations of an FEV, 

respectively.  Similarly, components FCR Semantics and CCR Semantics capture 

semantic information about the “standard” and component representations.  This 

syntactic and semantic information is used to determine the correspondence between 

component system and federation models of a real-world entity in order to define the 

entities, views and representations of the FIOM.  Once determined, this correspondence 

is captured in the model as an association relating an FEV’s FCR and CCR Schemas and 

is used later for resolving differences in representation between the models as discussed 

in Section IV.C.1.b(3).  Figure IV-6 depicts the FCR and CCR components of an FEV, 

with constituent Schema, Syntax and Semantics components shown for each of them. 

Syntactic information is used to capture the composition and 

structure of a class.  Class composition is provided as a list of terms depicting the class 

name, and the names and type signatures of the attributes and operations contained in the 

class.  Structural information includes data specifying the cardinality of attribute or 

operation occurrence, which attributes are included as parameters to which operations, 

whether attributes and operations are visible outside the class, etc.  The composition and 

structure defines a signature for the class that can be used for comparison with other 

classes. 

Semantics are used to provide information as to the meaning and 

behavior of a class, i.e., what does the state information about a class represent and what 

actions does the class perform?  Behavioral information can be captured in terms of a 

narrative description of the class and its attributes and operations; a set of conditions an 
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operation must satisfy; or a set of equations describing the dynamic behavior of the class. 

Details of the composition of FCR and CCR Syntax and Semantics 

classes are provided in Section VI.B.1.  Their use for determining correspondence among 

component and federation models of a real-world entity is discussed in Section VI.B.2. 

(3) Mechanisms for Resolving Differences in View and 

Representation.  The FIOM includes two mechanisms for resolving differences in view 

and representation among component and federation models.  The first mechanism, the 

FCR-CCR Translation, is used to resolve differences in representation between two 

models that have the same view of a real-world entity.  The second mechanism, the FCR 

Schema Inheritance Hierarchy is used to resolve differences in view.  

Resolving Representational Differences Between Component and 

Federation Models.  Differences between component representations having the same 

view of a real-world entity are resolved by means of a two-step translation process 

whereby an instance of a source CCR Schema is first converted to an equivalent FCR 

Schema instance and then to a corresponding destination CCR Schema instance.  As 

mentioned in Section IV.C.1.b(2), each FEV will contain exactly one FCR and may 

contain zero or more CCRs.  Accordingly, an FCR may correspond to a number of CCRs 

in the FEV, whereas each CCR will have exactly one FCR to which it corresponds.  Each 

CCR thus forms a unique FCR-CCR pair with its corresponding FCR.  For each FCR-

CCR pair, an FCR-CCR Translation is defined relating the FCR and CCR Schemas in 

order to enable conversion between schema instances.  The FCR-CCR Translation class 

is expected to be implemented as an association class and will include methods used to 

resolve differences among models related to heterogeneities of hardware and operating 

systems, organizational models, structure, presentation, and meaning.  The FCR-CCR 

Translation class is defined by the interoperability engineer and stored in the FEV for 

subsequent use. 

Figure IV-8 illustrates the FCR-CCR Translation class used to 

resolve differences in representation between federation and component models having 

the same view of a real-world entity.  An FCR-CCR Translation class contains two main 

methods to accomplish the conversion between schema instances.  The first, 
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translate(ccrN : CCR_Schema)  : FCR_Schema is used to convert an instance of a CCR 

Schema to its equivalent FCR Schema representation.  The second, 

translate(fcrN : FCR_Schema) : CCR_Schema is used to convert an FCR Schema instance to 

an equivalent CCR Schema instance.  Each of these methods contains a number of 

component methods used to convert between representations at an attribute-by-attribute 

and operation-by-operation level.  These methods are of the form 

ccrToFcr_fcrAttributeName(ccrAttributeName : ccrAttributeType) to convert from a 

component to a federation representation of an attribute or 

fcrToCcr_CcrAttributeName(fcrAttributeName : fcrAttributeType) to convert from a federation 

to a component representation.  Similar methods are defined for converting between 

operation name and operation parameter representations.  Details of FCR-CCR 

Translation class creation can be found in Section V.D.2.c and its use in resolving 

representational differences during runtime OOMI translator operation in Sections 

VII.C.1.b and VII.C.2.c. 
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FCR-CCR_Translation
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FCR_Schema CCR_Schema
1 *

FCR CCR

FEV

 
Figure IV-8. FCR-CCR Translation Class 

 
Resolving Differences in View Among Component Models.  The 

translations depicted in Figure IV-8 and described in the previous paragraphs enable the 

conversion between instances of two different schemas having the same view of the 

modeled real-world entity.  Rarely will two different systems’ view of a real-world entity 
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be identical.  In order to share information and jointly execute tasks between two systems 

that have different views of the real-world entity(s) defining the interoperation, these 

differences in view must be resolved.  Fortunately it is just as rare that different systems’ 

views of a real-world entity are completely disjoint (otherwise they wouldn’t be able to 

interoperate). 

Generally, two or more systems’ models of the same real-world 

entity will have some areas of commonality.  Two systems’ models may capture the same 

core state and behavior information of a real-world entity with each including additional 

state and behavior characteristics as required by the specific application.  In this situation 

a schema could be defined for the core state and behavior information of the view, and 

separate schemas defined for the extended information.  The schemas containing the 

extended information can be considered to be subtypes of the schema containing the 

common core information.  Commonalities in captured state and behavior information 

between component system entity models enable us to determine when a supertype-

subtype relationship exists between two component system schemas defining different 

views of the same real-world entity. 

By determining the supertype-subtype relationships between 

component system schemas, we can construct an inheritance hierarchy that can be used to 

determine when the information contained in one system’s view of an entity is suitable 

for use by another.  Because there can be multiple component system schemas with the 

same view and since the FCR Schema provides the “standard” representation of a view, 

the inheritance hierarchy is constructed relating an FEV’s FCR Schemas.  This hierarchy 

is constructed by evaluating the attributes (Αε) and operations (Ωε) contained in the FCR 

Schema for two views.  Figure IV-9 shows the FCR Schema Inheritance Hierarchy 

constructed for the example ground combat vehicle entity taken from Figure IV-3.  Due 

to space considerations and to enhance understanding, containing FCRs and related CCRs 

with their included components are not shown with the FCR Schemas.  Details of 

inheritance hierarchy construction and a discussion of the relationships possible between 

FEV schemas are provided in Chapter V and Appendix A. 
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GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType( )
getPosition( )
getTime( )
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR_Schema

status : Status

getStatus( )
setStatus(Status)

<<FCR Schema>>

 
Figure IV-9. FCR Schema Inheritance Hierarchy 

 
Determining when the information contained in one system’s view 

of an entity is suitable for use by another is easy when the producer’s view of an entity is 

a subtype of a consumer’s view, i.e. when the producer’s view schema extends the 

consumer’s view schema.  By Liskov and Wing’s behavioral notion of subtyping [LW94, 

WO00], anywhere a supertype can be used a subtype can be substituted without any 

difference in behavior.  Thus, in this instance the consumer will just ignore any additional 

information provided by the producer. 

This determination is not as easy when the producer’s view is a 

supertype of the consumer’s view, or when the producer’s view is not a direct ancestor or 

descendent of the consumer’s view in the inheritance hierarchy.  However, it is possible 

that the supertype of a real-world entity’s view can be substituted for a subtype of the 

view under certain circumstances.  These situations would include cases where 1) the 

attributes and operations which extend the supertype’s schema are optional for the 

component system providing a representation of the subtype view, 2) the missing 

information can be obtained from the available attributes and operations via interpolation, 

data smoothing, etc., or 3) default values can be specified for those attributes and 

operations (as allowable by the destination system).  Similarly, information can also be 

shared between component systems whose schemas are not direct ancestors or 

descendents of each other if there is a path in the inheritance hierarchy defined between 

 145



the producer view schema and the consumer view schema, and elements expected by the 

consumer that are not provided by the producer are optional or default or constructed 

values can be used.  In order to avoid difficulties with multiple inheritance in the 

construction of the inheritance hierarchy, join operations where information from two 

different producers can be combined to create a new view satisfying a consumer’s 

requirements are not permitted and are identified as an area for future research. 

The inheritance hierarchy described above is used to resolve 

differences in the number and type of attributes and operations used to model a real-

world entity between two systems in a federation.  Differences in representation for two 

systems having the same view of the attributes and operations used to model a real-world 

entity are handled by the FCR-CCR Translation class methods included with each FEV 

as discussed at the beginning of this section. 

2. OOMI Integrated Development Environment (IDE) 
Enabling a collection of related software systems to share information and task 

execution has the potential for significantly enhancing the capability of the resultant 

federation of systems over that of the individual components. The previously introduced 

Object-Oriented Method for Interoperability (OOMI) is used to enable information 

sharing and cooperative task execution among a federation of autonomously developed 

systems by resolving heterogeneities among shared elements of the problem domain 

modeled by the federation components.  In order to resolve such heterogeneities, a model 

of the real-world entities involved in the interoperation, termed an FIOM, is constructed 

for the specified system federation.  Construction of the FIOM is done prior to run-time 

by an interoperability engineer with the assistance of a specialized toolset, the OOMI 

Integrated Development Environment (OOMI IDE). 

The Graphical User Interface (GUI)-based OOMI IDE is used to:  

1. identify the real-world entities involved in the interoperation of systems in a 
federation, 

2. specify the different views of a real-world entity resulting from dissimilar 
component system perspectives of the attributes and operations required to 
model an entity, 

3. define a “standard” federation representation for each real-world entity view 
identified, and establish the relationship between the “standard” view 
representation and various component system view representations, 
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4. construct an inheritance hierarchy relating the different views of a real-world 
entity,  

5. manage a Federation Ontology of terms and representations used for defining 
the “standard” federation representation of the real-world entities whose state 
and behavior are shared among federation systems, 

6. define the transformations required to translate between component system 
and “standard” representations of a view, and 

7. generate system-specific information to be used by a translator to resolve 
modeling differences between component systems during their runtime 
operation. 

 
The first task in FIOM construction is determining the real-world entities whose 

state and behavior are to be shared among systems in the federation.  Each resultant FE is 

constructed from information contained in the component systems’ external interfaces or 

specified by an interoperability engineer.  The OOMI IDE provides functionality for 

enabling an interoperability engineer’s input or for extracting information from a 

component system’s external interface definition in order to construct the FEs involved in 

the system interoperation.  FE construction is assisted through use of a Federation 

Ontology containing the accepted terminology and representation to be used for defining 

the federation model of the real-world entity specified by an FE.  The OOMI IDE 

provides functionality for accessing and modifying the Federation Ontology during 

FIOM construction. 

Defining different views for an FE based on dissimilar component system 

perspectives of the attributes and operations required to model a real-world entity, 

defining a “standard” federation representation for each view, and identifying the 

relationships between views and between federation and component representations of a 

view require the interoperability engineer to identify correspondences between 

component and federation models of the real-world entities involved.  Correlation 

software is used during FIOM construction for relating component and federation models 

of the real-world entities involved and for defining an inheritance hierarchy capturing 

these relationships among federation entity views and view representations. 

After identifying the different representations of an FEV used by component 

systems, the transformations required to translate between representations must be 

defined.  The OOMI IDE assists the interoperability engineer in this task through the use 
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of a GUI-based matching process used to provide computer aid to transformation 

development, and the maintenance of a translation library to enable the reuse of common 

translation algorithms.  

Finally, class transformation and relationship information is extracted from the 

FIOM for each component system.  A translator uses the system-specific information to 

resolve modeling differences between component systems. 

Chapter V describes the functionality provided by the OOMI IDE and outlines the 

construction of an interoperability object model for a federation of systems, the FIOM. 

Correlation of component and federation real-world entity models is covered in 

Chapter VI. 

3. OOMI Translator 
Whether conducting information exchange or joint execution of tasks between 

systems, differences in view and representation of the real-world entities whose state and 

behavior are shared among systems must be resolved.   The interoperability object model 

constructed for a specified federation of component systems during the pre-runtime phase 

is used by a translator at run-time to reconcile differences in real-world entity view and 

representation.  

The translator serves as an intermediary between component systems.  It can be 

implemented as part of a software wrapper enveloping a producer or consumer system 

(or both).  A software wrapper is a piece of software used to alter the view provided by a 

component’s external interface without modifying the underlying component code.  

Alternately, the translator could be implemented on a stand-alone system that lies 

between interoperating systems, such as on the hub in a hub and spoke architecture. 
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Figure IV-10 shows an overview of the use of software wrappers and the 

involvement of the FIOM in the translation process.  As depicted in the figure, 

information or an operation signature exported by a source system is intercepted by the 

source model translator and converted from the source model to an intermediate model 

using the appropriate translation defined in the FIOM.  The intermediate model of the 

exported information is then routed to the destination system where the destination model 

translator intercepts it.  The destination model translator first uses the FCR Schema 

Inheritance Hierarchy contained in the FIOM to resolve differences in view between the 



source and destination models of the exported information.  The destination model 

translator then converts the intermediate model of the exported information to a model 

accepted by the destination system using the appropriate translation from the FIOM. 
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Figure IV-10. Translator - FIOM Interaction 

 
The translations required by the translator for both information exchange and joint 

task execution are similar.  For information exchange, the source system provides the 

exported information in the form of a set of attributes or objects of a producer class in the 

native format of the producer.  In order to be utilized by a consumer system, the exported 

information must be converted into the format expected by the destination system.  For 

joint task execution, a client system provides an operation name and a set of parameter 

values to a server system in the native format of the client.  The parameters may be 

attributes, operations, or objects of a client class.  Again, this information must be 

provided to the destination system in a format recognized by that system.  Thus the 

operation name and parameter values must be converted to a form recognized by the 

server system in order to invoke the desired server operation. 
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As indicated above, the translator must be capable of converting instances of a 

class’s attributes and operations (or both attributes and operations in the form of an object 

of the class) from one model to another.  The information required to effect these 

translations is captured as part of the FIOM during federation design.  As presented in 

Section IV.C.1.b(3), the information needed to resolve differences in what information is 

used to model a real-world entity between various component systems is captured in the 

FCR Schema Inheritance Hierarchy for each FE.  Differences in how each component 

system represents its view of the real-world entity are resolved through the translations 

included as part of each FEV, illustrated in Figure IV-8.  Then, at run-time, the translator 

accesses the information contained in the model to resolve differences in federation entity 

view and to effect the translation between component and standard representations of a 

view.  Chapter VII discusses the translator in detail. 

D. SUMMARY 
The Object-Oriented Method for Interoperability (OOMI) introduced in this 

dissertation is used for resolving expected modeling differences in a federation of 

independently developed, heterogeneous systems in order to enable system 

interoperability.  As the basis for achieving interoperability among systems, a model of 

the real-world entities whose state and behavior are shared among systems in the 

federation, termed a Federation Interoperability Object Model (FIOM), is defined.  

Disparities in component system models of these real-world entities are differentiated as 

to differences in what is modeled and differences in how the modeled information is 

represented, termed differences in view and representation, respectively. 

Differences in view among models are resolved through use of an FCR Schema 

inheritance hierarchy relating commonalities among views provided by different 

component system models of the same real-world entity.  Differences in representation 

are resolved through the use of translations to convert between models that provide the 

same view of the real-world entity.  In addition to the FCR Schema Inheritance Hierarchy 

and translations used to resolve modeling differences among systems, the FIOM also 

includes syntactic and semantic information used during FIOM construction to establish 

the correspondences between different models of the same real-world entity. 
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Construction of an FIOM for a specified federation of systems is done prior to 

run-time by an interoperability engineer with the assistance of a specialized toolset, the 

OOMI Integrated Development Environment (OOMI IDE).  The OOMI IDE provides 

computer aid in 1) identifying the real-world entities involved in the interoperation of 

systems in a federation; 2) specifying the different views and view representations a 

component system may provide of a real-world entity being modeled; 3) defining the 

“standard” federation representation of such views and representations; 4) managing the 

Federation Ontology used in federation representation definition; 5) constructing the 

FCR Schema inheritance hierarchies and translations needed to resolve such modeling 

differences; and 6) generating the system-specific information to be used by a translator 

to resolve modeling differences between component systems during their runtime 

operation. 

Finally, at runtime, the OOMI translator utilizes the information contained in the 

FIOM to automatically resolve differences in the information exchanged between 

federation systems or in the operation signatures involved in joint task execution in order 

to enable system interoperation. 
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V. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY 
INTEGRATED DEVELOPMENT ENVIRONMENT 

(OOMI IDE) 
 
 
 

A. OOMI IDE PURPOSE 
As discussed in Chapter IV, resolution of modeling differences among 

heterogeneous components of a federation is accomplished using a two-step process.  In 

the first step, accomplished prior to runtime, an integrated model of the real-world 

entities whose state and behavior are to be shared among systems in the federation, 

termed a Federation Interoperability Object Model (FIOM), is constructed.  In the second 

step, performed at runtime, translator(s) reconcile view and representational differences 

among component systems using the FIOM. 

While construction of the FIOM and its use in reconciling modeling differences in 

itself advances methods currently used for system interoperability, the true benefits of the 

Object Oriented Method for Interoperability (OOMI) lie in the foundation it provides for 

application of computer aid.  From the discussion in Section IV.C.2, five areas are 

identified where computer-aid can be applied to the construction of an interoperability 

object model for a federation of systems.  These are: 

1. extraction of information contained in a component system’s external 
interface definition to construct a federation model of the real-world entities 
involved in system interoperation,  

2. managing the Federation Ontology used in federation model definition, 
3. correlation of component and federation models of the real-world entities 

involved in system interoperation and construction of an inheritance hierarchy 
to capture the relationships between the models,  

4. defining the transformations required to translate between different 
information representations used in the component and federation models, and  

5. generating system-specific information used for runtime resolution of 
modeling differences among component systems. 

 
A specialized toolset, the OOMI Integrated Development Environment (OOMI 

IDE) is proposed to provide computer-aid in the above areas to the development of an 

FIOM for a federation of component systems.  The purpose of the OOMI IDE, given a 

definition of the external interfaces of candidate federation components, is to construct a 
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model of the interoperation between systems.  A component system external interface 

specifies the information it exports or imports as well as the operations it either makes 

available to external entities or requires from external systems or components in order to 

accomplish its objectives.  From the component system’s external interface definition a 

model, the FIOM, is constructed that defines the state and behavioral information shared 

between component systems and provides the mechanisms for resolving differences in 

view and representation of that information among systems. 

B. OOMI IDE DEVELOPMENT CONSIDERATIONS 
Before discussing the FIOM construction process used to define the proposed 

OOMI IDE and the initial IDE prototype components designed to support 

implementation of those processes, I first take a look at some of the high-level 

considerations used in developing an IDE to be used to support FIOM construction. 

First among these considerations is the degree to which application of computer 

aid is feasible.  In other words, is the FIOM construction process completely automatable 

or is human intervention required?  Section V.C discusses the FIOM construction process 

and identifies which phases in the process are amenable to application of computer aid.  

Section V.D then describes the components of an initial prototype OOMI IDE designed 

to add computer aid to the FIOM construction process introduced in Section V.C. 

Another consideration in the development of an IDE to support FIOM 

construction is the availability and format of the component system external interface 

definitions used in constructing the FIOM.  Can an IDE be developed that can construct a 

model of the real-world entities involved in the interoperation of a federation of systems 

from any component system external interface definition?  Or are there certain practical 

limitations that must be imposed on this definition in order to support process 

automation?  Section V.D.2.a(2) discusses the assumptions imposed on the component 

system external interface definition in the initial prototype OOMI IDE implementation. 
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An additional consideration addressed in developing a prototype OOMI IDE is 

the number and capabilities of the intended user(s) of the system.  Is the IDE to be used 

by a single interoperability engineer on a single workstation, or by multiple engineers 

across a system network?  What capabilities are interoperability engineers expected to 

possess?  Are they expected to be knowledgeable in the inner workings of each of the 



systems proposed for inclusion in a federation or in just the domain to which the 

proposed federation resides?  As indicated in [CY01], for the initial prototype OOMI IDE 

implementation, the interoperability engineer is presumed to be an experienced software 

engineer that is knowledgeable in the proposed federation’s domain namespace, i.e., he is 

familiar with the terminology and representations used for defining real-world entities 

whose state and behavior are shared among systems in the federation.  In addition, the 

initial prototype OOMI IDE is targeted for used by a single interoperability engineer on a 

single workstation with provisions for future multi-engineer use across a network. 

If future federation development requirements dictate a multi-user, network based 

IDE implementation, then consideration must be given to whether a centralized or 

decentralized approach is to be used for model construction and storage.  In a centralized 

approach to model construction, creation of the Federation Entities (FEs) used to model 

the real-world entities involved in system interoperation and the federation representation 

of those entities would be centrally controlled, with component representation creation 

responsibility distributed among the group of participating interoperability engineers.  In 

a decentralized approach, interoperability engineers would be free to add to or modify the 

FEs and their defining federation representations as long as prescribed guidelines were 

followed in the names and representations chosen for federation model creation.  

Similarly, FIOM storage could be accomplished in either a centralized or decentralized 

manner.  In a centralized FIOM storage strategy, the information used for FIOM 

construction as well as the completed FIOM would be located on a centralized FIOM 

server with access provided to each of the connecting IDE clients.  In a decentralized 

storage approach, this information would be divided between each of the IDE clients. 

C. FEDERATION INTEROPERABILITY OBJECT MODEL (FIOM) 
CONSTRUCTION PROCESS 
In order to provide a better understanding of where computer aid can assist the 

interoperability engineer in developing a model of the real-world entities involved in the 

interoperation of a federation of systems, I first look at defining a process for 

constructing an interoperability object model for a specified system federation, the 

FIOM.  As depicted in the Figure V-1 use-case model of the candidate FIOM 

construction process, I propose a five-phase process for FIOM construction.  These five 
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phases are 1) Load Component System External Interface, 2) Manage Federation 

Entities, 3) Register Component Class Representation (CCR), 4) Update Federation 

Ontology, and 5) Generate System-Specific Translator Information.  There is not a firm 

order for execution of these phases; Load Component System External Interface, Manage 

Federation Entities and Update Federation Ontology can be performed independently.  

However, Load Component System External Interface and Manage Federation Entities 

must be accomplished prior to Register CCR, and Register CCR must occur prior to 

Generate System-Specific Translator Information. 

FIOM Construction
Process

Update Federation  On tology

Component System External 
Inte rface Schema

FIOM Database

Ontology Database

Ontology Librarian

Manage Federation Entities

<<search>>

Add Component System External 
Interface

nn

<<incl udes>>

Inteoperabil ity Engineer

Request Ontology Update

<<communicate>>

Translator Information DatabaseGenerate System Specific 
Translator Information

Register Compone nt Class 
Representation

<<search>>

<<includes>>

Tra nsla tion Lib rary

<<search>>

 
Figure V-1. Use-Case Model of Candidate FIOM Construction Process 

 156



1. Add Component System External Interface 
As discussed in Section IV.C.1.b(1), the real-world entities involved in federation 

system interoperation are captured in the FIOM as Federation Entities (FEs).  An FE 

includes component and federation models of these real-world entities as well as the 

relationships and translations required to resolve any differences between models. 

A component model of a real-world entity is constructed from information 

contained in the component system’s external interface.  A component system’s external 

interface specifies the state and behavioral information exported from or imported to the 

component system.  From this information an interoperability engineer can identify 

entities in the real world to which the exported or imported information pertains.  These 

real-world entities are modeled as classes under the OOMI.  These classes, captured in 

the FIOM as Component Class Representations (CCRs), represent the component 

system’s perspective of the real-world entities involved in the system interoperation.  The 

Add Component System External Interface phase of FIOM development is responsible for 

creating CCRs from the information extracted from a component system’s external 

interface.  These CCRs are included with the FE used to represent the real-world entity in 

the FIOM during the Register CCR development phase.  The process of defining a 

component system’s CCRs from its external interface definition is one area targeted for 

application of computer aid in the OOMI IDE. 
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Definition of a component system’s CCRs from its external interface specification 

is repeated for each component in a federation.  In order to interoperate, systems must 

share information and operations used to model real-world entities of common interest.  

However, each component may present a different model of these entities making it 

difficult to determine that the models describe the same entity.  In order to achieve 

interoperation among these components, the interoperability engineer must determine 

when two different models refer to the same real-world entity.  Comparing syntactic and 

semantic information used to describe the models facilitates this determination.  This 

syntactic and semantic information is extracted from a component system’s external 

interface definition during the Add Component System External Interface phase of FIOM 

construction and saved in the CCRs defined from the external interface specification as 

CCR Syntax and CCR Semantics components, respectively.  Details of the process used in 



the OOMI IDE prototype for constructing these components are described in 

Section VI.B.1.  Extraction of syntactic and semantic information from a component 

system’s external interface definition and use of that information to correlate real-world 

entity models is another area where the OOMI IDE can provide computer aid to the 

interoperability engineer. 

2. Manage Federation Entities (FEs) 
Determining the real-world entities involved in the interoperation of systems in a 

federation can be done in either a top-down or bottom-up manner.  The Manage 

Federation Entities phase provides the interoperability engineer with the ability to define 

the FEs used to characterize these real-world entities in a top-down fashion.  Bottom-up 

FE definition is discussed in Section V.C.3.  Manage Federation Entities provides the 

ability for the interoperability engineer to display the FIOM as well as modify its contents 

by adding or removing federation components from the model. 

The ability to modify the FIOM provided in the Manage Federation Entities 

phase is designed to support the top-down definition of the FEs that comprise the 

interoperation among systems.  During this phase the interoperability engineer can 

specify the FE, initial Federation Entity View (FEV), and corresponding Federation Class 

Representation (FCR) with defining FCR Schema for each real-world entity defining the 

interoperation.  The terms used for defining the FE, FEV and FCR comprise an ontology 

used to describe the federation’s representation of the real-world entities involved in the 

interoperation, termed the Federation Ontology in Chapter IV.  Federation Ontology 

management is covered in Section V.C.4. 

Along with providing the capability for the interoperability engineer to specify the 

contents of the FCR Schema for a federation entity, the Manage Federation Entities 

phase enables the automatic generation of syntactic and semantic information used to 

help correlate component representations of the entity with the federation representation.  

The generated syntactic and semantic information is captured as FCR Syntax and FCR 

Semantics components, respectively, and added to the corresponding FCR in the FIOM.  

Details of the syntactic and semantic generation methodology are covered in 

Section VI.B.1. 
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The interoperability engineer is also provided the ability to display the contents of 

the FIOM during the Manage Federation Entities phase.  This capability includes the 

ability to view the FIOM as a whole or to focus on any of its FEs or their constituent 

components. 

3. Register Component Class Representation (CCR) 
The capability to display and modify the contents of the FIOM presented in the 

previous section is also provided during the register CCR phase.  However, the Manage 

Federation Entities phase’s focus is on defining the FE’s used to characterize the real-

world entities involved in the interoperation while the Register CCR phase is focused on 

adding the component model of a real-world entity to the FEV that has the same 

perspective of the real-world entity as the CCR being registered.  Therefore, the Register 

CCR phase is concerned with 1) finding the FE and FEV that correspond to a CCR 

Schema being registered; 2) modifying the FIOM if necessary to provide an FE with FEV 

whose FCR Schema attribute and operation sets are in one-to-one correspondence with 

the CCR Schema attribute and operation sets; 3) adding the CCR, with constituent CCR 

Schema, Syntax, and Semantic components to the FEV whose FCR Schema provides the 

required one-to-one correspondence; and 4) adding translations necessary to resolve any 

representational differences between the CCR Schema being registered and its 

corresponding FCR Schema. 

a. Finding FE Corresponding To CCR Being Registered 
The first step in registering a CCR is to locate the FE in the FIOM used to 

model the same real-world entity as the CCR.  Computer aid can be applied to this task 

by using the syntactic and semantic information contained in the CCR and previously 

stored with each FCR in the FEV.  Details of the methods available for assisting the 

interoperability engineer in finding an FE corresponding to the CCR being registered can 

be found in Chapter III.  Although the IDE can provide computer-aid for matching CCRs 

to the appropriate FE, the interoperability engineer must provide the ultimate 

determination of whether a CCR and FCR refer to the same real-world entity. 
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b. Modifying FIOM to Provide Required Correspondence Between 
CCR and FCR Schema 

If there is no FE in the FIOM that corresponds to the same real-world 

entity as the CCR being registered, then the interoperability engineer must create a new 

FE for this real-world entity, with view corresponding to that presented by the CCR 

Schema.  Such would be the case when adding the first component system model of a 

real-world entity to the FIOM.  The newly created FE will include an FEV with FCR 

Schema containing attribute and operation sets that exhibit a one-to-one correspondence 

with the CCR Schema attribute and operation sets.  That is, a function f: CCR  FCR 

must exist mapping the CCR Schema attribute and operation sets (CCR(Αε, Ωε)) to FCR 

Schema attribute and operation sets (FCR(Αε, Ωε)) that is one-to-one and onto and 

whose operations are behaviorally equivalent.  New FCR Syntax and FCR Semantics 

components will be generated from this FCR Schema component and added to the new 

FEV.  The interoperability engineer is responsible for defining the FCR Schema 

attributes and operations that correspond to the CCR Schema attribute and operation sets. 

If an FE is found in the FIOM for the real-world entity modeled by the 

CCR being registered, then the interoperability engineer must either find an existing FEV 

within the FE that has the same view of the real-world entity as the CCR being registered, 

or must add such an FEV to the FE.  The views (FEVs) of the FE are examined to 

determine the relationship between the Schema properties of the CCR being registered 

and those of each FCR defined for the FE’s views. 

If there is an existing FEV within the FE such that there is a one-to-one 

correspondence between the attribute and operation sets of the CCR Schema being 

registered and those of the FEV’s FCR Schema, and the operation sets are behaviorally 

equivalent, then the CCR, with component CCR Schema, CCR Syntax, and CCR 

Semantics, is added to this FEV. 

If the FE does not contain a view whose FCR Schema attribute and 

operation sets have a one-to-one correspondence with the CCR Schema attribute and 

operation sets or the operation sets are not behaviorally equivalent, then a new FEV with 

FCR Schema whose attribute and operation sets exhibit a one-to-one correspondence 

with the CCR Schema attribute and operation sets and whose operations are behaviorally 
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equivalent must be added to the FE.  The new FEV will be derived from an existing view 

of the containing FE and its defining FCR Schema constructed either through 

specialization or generalization of the FCR Schema from the existing view.  Details of 

the process for modifying the FIOM to provide an FE with FEV whose FCR Schema has 

the required correspondence between its attribute and operation sets and those of the 

CCR Schema being registered are provided in Appendix A. 

c. Adding CCR to FEV Whose FCR Schema Exhibits a One-To-
One Correspondence with the CCR Schema Being Registered 

Once an FEV is found whose FCR Schema attribute and operation sets are 

in one-to-one correspondence with the CCR Schema attribute and operation sets, the 

CCR is added to the FEV and relationships between component and federation models of 

the real-world entity are established.  The CCR, with component CCR Schema, CCR 

Syntax, and CCR Semantics, is added to this FEV and an association established between 

the CCR Schema and the FEV’s FCR Schema.  Details of the process for adding a CCR 

to the FEV whose FCR Schema exhibits a one-to-one correspondence with the CCR 

Schema being registered are provided in Appendix A. 

d. Adding Translations Between Component And Federation Class 
Representations Of Real-World Entity 

After finding or creating an FEV whose FCR Schema has the same 

perspective of the real-world entity as the CCR being registered and after adding the CCR 

to this FEV, the next task is to define the translations required to convert between the 

federation and component representations of that view. 

The first step in defining the translations is determining whether a 

translation is required and whether the required translation is needed to convert from 

component to federation representation or from federation to component representation.  

A translation is required whenever source and destination representations of shared 

information and operations exhibit differences caused by heterogeneities of hardware and 

operating systems, organizational models, structure, presentation, or meaning.  The basic 

rule in determining the direction of required translation is that if a component system 

provides a mechanism for exporting state information about an entity via a send or return 

action or for invoking an operation on another system via either a call, create, or destroy 
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action, then a translation will be required to convert from the component representation to 

the federation representation.  Conversely, if a component system provides a mechanism 

for importing state information or for servicing an external operation invocation, then a 

translation will be required to convert from the federation representation to the 

component representation. 

When creating translations, an interoperability engineer should be 

cognizant of whether there are potential consumers for information being produced by a 

system, or for prospective consumers whether there are systems capable of producing the 

desired information.  Otherwise, creating a translation for unneeded or unavailable 

information will unnecessarily tax the resources available to the federation developer.  

Information regarding potential consumers or producers is available in the FCR-CCR 

Translation classes defined for an FE; however, because of the incremental process used 

in FIOM construction full knowledge of available producers and consumers would not be 

know prior to FIOM completion.  A means for determining this information at the start of 

FIOM creation would be beneficial, perhaps through pre-processing of a component 

system’s external interface definition, and is identified as an area for future research. 

Once it is determined that a translation is required and the direction of 

translation identified, the interoperability engineer must supply the required translation.  

Computer aid can be applied to translation definition in two areas.  First, correspondences 

between the attribute and operation sets contained in the FCR and CCR Schemas can be 

used to produce a framework for the translations required to resolve representational 

differences between the Schemas.  Second, automated access to a library of commonly 

used functional translations can be provided to facilitate reuse during translation 

definition.  Once attribute and operation mapping and functional transformation 

definition is completed for a translation, that translation is added to the FEV that contains 

the FCR and CCR for which the translation is defined, and an association established 

between the translation and the concerned FCR and CCR Schemas. 

4. Update Federation Ontology 
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The OOMI includes a Federation Ontology to be used in defining federation 

model components during FIOM construction.  Use of an ontology enables the 

standardization of terminology and representation across the federation.  The ontology 



provides a means for adhering to naming and presentation standardization efforts while 

not constraining federation terminology use when approved standards are not sufficient to 

meet the requirements for the desired integration effort. 

During the Update Federation Ontology phase of FIOM development, the 

interoperability engineer can provide additions, deletions, and modifications to this 

Federation Ontology for subsequent access during FE creation in the Manage Federation 

Entities or Register CCR phases of FIOM development.  The Federation Ontology can be 

produced specifically for the federation being created or it can be derived from an 

industry or domain specific standard and expanded or restricted as appropriate for the 

federation being constructed. 

5. Generate System-Specific Translator Information 
During the Generate System-Specific Translator Information phase of FIOM 

development, information is extracted from the FIOM for use by a specific system 

translator.  Depending on the architecture chosen for translator implementation, a specific 

translator may not require all of the data contained in the FIOM to resolve modeling 

differences among the systems it is associated with.  For example, in a wrapper-based 

implementation where the translator is included in a wrapper surrounding each system in 

the federation, the translator is only concerned with converting exported or imported 

information and operations between the wrapped system’s model and the federation 

model of the real-world entities defining the shared information.  Extracting only that 

information required for use by the specified system translator from the FIOM reduces 

the amount of information required by the translator to just that which is relevant to the 

system to which the translator is associated. 

D. OOMI IDE PROTOTYPE 
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Based on the FIOM construction process outlined in Section V.C, a prototype 

Integrated Development Environment (IDE) is proposed as part of the OOMI.  The 

prototype OOMI IDE addresses many of the development considerations called out in 

Section V.B and assists the interoperability engineer in creating an interoperability model 

for a system federation through application of computer aid to the FIOM construction 

process outlined in Section V.C.  Major components of the prototype OOMI IDE include 

the: 1) User Interface; 2) FIOM Construction Manager consisting of the Federation Entity 



Manager, Component Model Correlator, and Translation Generator; 3) Translator 

Information Generator; 4) Federation Ontology Manager; 5) FIOM Database; 

6) Translation Library; 7) Federation Ontology Database; and 8) Translator Information 

Database.  Figure V-2 illustrates the primary components of the prototype OOMI IDE. 
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Figure V-2. OOMI IDE Block Diagram 
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1. User Interface 
The user interface provides a GUI-based portal for the interoperability engineer to 

input and manipulate information required for FIOM construction, Federation Ontology 

management, and the extraction of system-specific information from the FIOM for use by 

the translator.  Further detail on the OOMI IDE user interface components and display 

organization is provided in Section V.E 

2. FIOM Construction Manager 
The FIOM Construction Manager utilizes information contained in a component 

system’s external interface definition and entered by an interoperability engineer to 

construct a model of the information shared among component systems of the federation.  

The FIOM Construction Manager includes a Federation Entity Manager, Component 

Model Correlator, and Translation Generator. 

a. Federation Entity Manager 
The Federation Entity Manager provides the capability for creating and 

modifying the FEs used to capture component and federation models of the real-world 

entities involved in the interoperation among federation systems.  FE creation involves 

1) initial definition of a federation model for each of the real-world entities involved in 

system interoperation; 2) creation of a component model of the real-world entities 

involved in the export or import of information and operations from the specific 

component systems in the federation; 3) modification of the FE and included federation 

model (if necessary) to include FEVs that coincide with the views presented by the 

various component systems’ perspectives of an entity; and 4) addition of a component 

system’s model of a real-world entity to the FEV providing the same perspective of the 

entity as the component model. 

(1) FE Creation.  FE creation can be accomplished in either a 

top-down or bottom-up manner.  During top-down FE creation, done during the Manage 

Federation Entities phase of FIOM construction, the interoperability engineer knows up 

front that certain information is to be shared between federation components.  This 

information may come from knowledge of the information and operation requirements of 

a component system, knowledge of the information and operations a component makes 

available to other systems, a desire to eliminate duplication of information or operations 
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by components of the federation, or specification by the federation development funding 

authority that certain information and operations shall be shared among systems. 

The interoperability engineer specifies the FE, initial FE view 

(FEV), and corresponding FCR with defining FCR Schema comprising the federation 

model of this view from this prior knowledge.  The prototype OOMI IDE enables top-

down FE creation using information 1) input by the interoperability engineer; 

2) contained in a specified component system’s model of a real-world entity; or 

3) contained in the Federation Ontology.  Choice 2) above might be used for FE creation 

in the event that one of the component system definitions of a real-world entity were 

designated as the “standard” or federation representation with which other component 

representations must interoperate. 

During bottom-up FE creation, done during the Register CCR 

phase of FIOM construction, the Federation Entity Manager uses details of the 

information and operations exported from or imported to a component system to identify 

the real-world entities whose state and behavior may be shared among systems.  An 

object model of a component system’s external interface is created for comparison with 

existing federation models of shared real-world entities using the Component Model 

Correlator discussed in Section V.D.2.b.  Comparison is done to determine whether the 

component model corresponds to an existing federation model or identifies a new real-

world entity for sharing.  New entities are consequently targeted for FE creation.  From 

this information the interoperability engineer specifies the FE, initial FEV, and 

corresponding FCR with defining FCR Schema for the real-world entities defining the 

interoperation.  FCR Syntax and FCR Semantics components used in correlating 

component and federation models of the real-world entities involved in system 

interoperation are created from the FCR Schema by the Component Model Correlator 

discussed in Section V.D.2.b.  Component model creation, discussed in Section 

V.D.2.a(2), must be completed prior to initiating bottom-up FE creation. 

To enhance interoperability with systems added to the federation 

during later modifications, terminology and representations used in FE creation should be 

taken from the Federation Ontology where possible or nominated for inclusion in the 
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Federation Ontology if not.  The terminology contained in the Federation Ontology can 

be derived from naming standardization efforts such as the DII COE XML Registry or 

FDMS namespace [DII01, FDM01].  Utilizing a sanctioned naming standard provides an 

added benefit should future interoperation with systems complying with such standards 

be required.  In this case little or no modification to the FIOM and FIOM-dependent 

wrapper-based translators would be required.  Federation Ontology management is 

covered in Sections V.C.4 and V.D.4. 

Whether acquired by top-down or bottom-up means, the 

information required for FE and FCR creation is captured by the OOMI IDE as an XML 

Schema which will be used to automatically generate the FCR Schema defining the real-

world entity’s shared information and operations.  The Department of Defense (DoD) is 

counting on XML and XML-related technologies to enable information dissemination 

and to resolve many interoperability issues.  DoD Directive 8320.1, DoD Data 

Administration [DDA91], authorizes the establishment of and assigns responsibilities for 

DoD data administration to plan, manage, and regulate data within the Department of 

Defense.  The Defense Information Systems Agency (DISA) is designated as the lead 

agency responsible for executing the policy and procedures and making DoD data 

standards available to the community.  DISA is using XML as its common data exchange 

format in support of its Defense Information Infrastructure Common Operating 

Environment (DII COE) data engineering strategy [CY01].  

The FCR Schema is automatically generated from this XML 

Schema through a transformation process.  Transformation involves the use of XML data 

binding technology to convert the XML Schema into language-specific class definitions, 

initially targeting the Java programming language [CY01].  The FCR Schema thus 

created provides the federation model for the real-world entities involved in the 

interoperation. 

(2) Component Model Creation.  The next function handled by 

the Federation Entity Manager is the creation of a component system object model of the 

real-world entities whose information and operations are exported from or imported to a 

component system.  This component system object model is created by the 
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interoperability engineer using Federation Entity Manager functionality and displays 

during bottom-up FE creation as discussed in Section V.D.2.a(1).  While an object model 

of the interoperation among systems could be constructed from any component system 

external interface representation, the prototype OOMI IDE discussed in this dissertation 

uses XML Schema to represent the external interfaces of the component systems being 

integrated [ABK00]. 

Although the external interface for a candidate federation 

component might not be described in terms of the object paradigm, [GL99] indicates that 

defining the external interface in terms of a number of classes that represent a system’s 

shared state and behavior is technically feasible.  That, coupled with DoD’s move toward 

adoption of XML as its common data exchange format and the ability to use XML data 

binding to transform the XML rendering of a component system’s external interface into 

classes to be used for determining the real-world entities involved in the interoperation 

among systems, makes the assumption that a component system’s external interface be 

defined in terms of an XML Schema reasonable [CY01]. 

A key pre-condition for the use of the OOMI IDE for constructing 

a model of the interoperation among systems in a federation is that each system’s external 

interface is defined in terms of one or more XML Schemas, each corresponding to a real-

world entity modeled by the system.  The schema captures the attributes and operations 

defining the component system’s perspective of the real-world entity as well as syntactic 

and semantic information providing data on the contents, structure and meaning of the 

entity’s attributes and operations.  The Federation Entity Manager provides the capability 

to open the XML Schema file defining the component system external interface and to 

create a corresponding class representation for each real-world entity defined by the 

XML Schema. 

This class representation, captured in the FIOM as a CCR Schema, 

is generated from the XML Schema using XML data binding.  The Federation Entity 

Manager uses XML data binding during the Add Component System External Interface 

phase to automatically generate a CCR Schema corresponding to the real-world entities 

whose information and operations are shared by the component system. 
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(3) Modifying FIOM (If Necessary) to Add Component Model 

to FE.  From the CCR thus created, the interoperability engineer either locates an existing 

FE in the FIOM that pertains to the same real-world entity as the CCR or modifies the 

FIOM to add an FE for this entity during the Register CCR phase of FIOM development.  

Help in locating an existing FE is provided by the Component Model Correlator 

discussed in Section V.D.2.b.  If during CCR registration there is no FE that corresponds 

to the same real-world entity as the CCR being registered, then the interoperability 

engineer must create a new FE for this real-world entity.  The Federation Entity Manager 

provides the functionality for defining a new FE with initial FEV containing an FCR with 

defining FCR Schema corresponding to the CCR Schema being registered.  The 

Federation Entity Manager also provides the functionality required to add the CCR to the 

newly created FEV. 

If the FIOM contains an FE defined for the real-world entity 

modeled by the CCR being registered, then the interoperability engineer must either find 

an existing FEV within the FE whose defining FCR Schema has the same view of the 

real-world entity as the CCR being registered, or must add such an FEV to the FE.  The 

Federation Entity Manager assists the interoperability engineer in adding a new FEV to 

the FE and in adding the CCR to the corresponding FEV.  Details of FCR Schema 

Inheritance Hierarchy creation and modification are found in Appendix A. 

(4) Adding Component Entity Model to FE.  Once an FE with 

FEV and FCR Schema corresponding to the CCR Schema being registered is either found 

in the FIOM or created, the Federation Entity Manager provides the capability to add the 

CCR, with included CCR Schema, CCR Syntax, and CCR Semantics components to the 

FE.  CCR Syntax and CCR Semantics components are created from the CCR Schema by 

the Component Model Correlator discussed in Section V.D.2.b during the Add 

Component System External Interface phase.  They are used in correlating component 

and federation models of the real-world entities involved in system interoperation.  In 

addition, the Federation Entity Manager adds translations, created by the Translation 

Generator discussed in Section V.D.2.c, to the FE during the Register CCR phase of 

FIOM development.  These translations are used to resolve representational differences 
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between component and federation models of the real-world entities involved in system 

interoperation. 

b. Component Model Correlator 
The Component Model Correlator is responsible for establishing 

correspondences among information exported from or imported to component systems in 

a federation.  These correspondences are used during the Register CCR phase of FIOM 

construction to identify the real-world entities involved in system interoperation and to 

create the FEs used to model a real-world entity in the FIOM.  To establish these 

correspondences, the Component Model Correlator constructs CCR and FCR Syntax and 

Semantics components from the information contained in a component system’s external 

interface description or input by the interoperability engineer.  Details of CCR and FCR 

Syntax and Semantic component construction are provided in Chapter VI. 

As discussed in Section IV.C.1.a, each component system may have a 

different model of the real-world entities identified in the system’s external interface 

definition.  Correlation of these models is necessary for systems interoperation.  

Correlation can be accomplished either by direct comparison of the component system 

models or by defining a “standard” model for a real-world entity and comparing each 

component model to the standard.  As presented in Section IV.C.1.b(1), different 

perspectives provided by the various component system models of a real-world entity are 

captured in the OOMI as different views (FEVs) of an FE.  For each FEV an FCR 

provides the “standard” representation of that view.  Comparing each component 

representation of a real-world entity with previously defined “standard” view 

representations enables the interoperability engineer, with IDE assistance, to determine 

the relationships among component models. 
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The OOMI IDE correlation method involves a two-phase process, first 

screening FEVs on the basis of included semantic information and subsequently on the 

basis of the included syntactic information.  Each phase produces a correlation score 

whereby candidate FEVs can be ranked according to best potential match.  The IDE also 

provides the capability to choose selected FEVs from the first phase of the correlation 

process for submission to the second phase.  The expectation is that the first phase will be 

used to eliminate obvious mismatches while the second phase will be used to zero-in on 



potential matches.  For each phase of the screening process, a threshold value can be set 

to minimize the number of potential matches that have to be examined by the 

interoperability engineer.  Although the IDE provides computer-aid for matching CCRs 

to the appropriate FE, the interoperability engineer must provide the ultimate 

determination of whether a CCR and FCR refer to the same real-world entity.  Details of 

the class correlation process are covered in Chapter VI. 

c. Translation Generator 
Given corresponding federation and component models of a real-world 

entity whose information and operations are shared among systems, the OOMI IDE 

assists the interoperability engineer during the Register CCR phase of FIOM construction 

with defining translations required to resolve representational differences between 

models.  Computer aid is provided to the interoperability engineer in three areas.  First, 

using correspondences between component and federation attributes and operations 

identified by the user, the OOMI IDE Translation Generator provides a framework for 

translation definition.  Second, the OOMI IDE provides facilities for creation and 

maintenance of a library of pre-defined translation definitions for insertion into this 

translation framework.  Third, the OOMI IDE provides facilities for user customization 

of the translations used for representational difference resolution. 
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The user is presented with a graphical representation of the CCR and FCR 

Schemas from an FEV and then given the capability to match attributes and operations 

between the two representations of that view via a “click-to-select” procedure.  From the 

user’s selections a translation “skeleton” is created that maps a source attribute or 

operation representation to the corresponding destination attribute or operation.  

Differences in meaning and structural representation will automatically be resolved by 

the mapping procedure through the associations linking representations established by the 

user.  Differences in presentation are resolved by the addition of functional 

transformation routines to the translation skeleton.  These functional transformation 

routines can be selected from a library of previously defined common translations or 

created by the interoperability engineer.  Once attribute and operation mapping and 

functional transformation definition is completed for a translation, that translation is 

added to the FEV containing the FCR and CCR for which the translation is defined, and 



an association established between the translation and the involved FCR and CCR 

Schemas. 

Translations between the federation and component system 

representations of an entity are implemented as operations of an association class 

between the corresponding CCR and FCR, termed an FCR-CCR Translation class in the 

OOMI.  Significant consideration has been given toward the use of the eXtensible 

Stylesheet Language (XSL) to define the translations.  The declarative nature of XSL and 

the availability of a number of open-source tools for use in effecting the translations 

made XSL appear to be the technology of choice for defining the required translations, 

and XSL Transformation (XSLT) the leading choice for implementation of the wrapper-

based translator [ABK00, Kay00].  However, we determined that the facilities to perform 

other than simple functional transformations provided with the current XSLT 

recommendation proved inadequate for the types of functional transformations required 

in integrating existing legacy systems, such as the conversion of a geographic position 

from a latitude/longitude to a Military Grid Reference System (MGRS) representation.  

The ability to define such transformations using the capabilities provided by a procedural 

or object-oriented language enables us to handle such requirements. 

Design and development of the Translation Generator for the initial 

prototype OOMI IDE was completed by Lee [Lee02].  The initial prototype Translation 

Generator enables the interoperability engineer to construct the translation framework 

from user-identified correspondences.  Future implementations will incorporate a 

translation library for predefined functional transformation storage and retrieval as well 

as provide assistance to the interoperability engineer in identifying attribute and operation 

correspondences. 

3. Translator Information Generator 
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The Translator Information Generator implements required functionality from the 

Generate System-Specific Translator Information phase of FIOM construction to extract 

information from the FIOM for use by a specific system translator.  Depending on the 

architecture chosen for translator implementation, a specific translator may not require all 

of the data contained in the FIOM to resolve modeling differences among the systems it 

is associated with.  This information is output to the Translator Information Database 



discussed in Section V.D.8 for subsequent use during run-time by a specified system 

translator. 

A source model translator is used to convert from the source model of the 

exported information or operation to the corresponding federation model of that 

information or operation.  Therefore, if a separate translator is implemented for each 

component in the federation, the source model translator is only concerned with those 

FEs which include a CCR defined for the source system.  Consequently, information 

extracted from the FIOM for the system’s source model translator would consist of any 

FEs that include a CCR defined for that system.  These FEs would include the 

translations required to resolve representational differences between the component and 

federation models of the exported information and operations.  However, if a single 

source model translator is implemented for all of the components in the federation, the 

translator would require the information contained in all of the FE’s in the FIOM. 

The destination model translator is used to convert from the federation model of 

the information imported to a system or the operations requested from the system to the 

destination model of that information or operation request.  Therefore, if a separate 

translator is implemented for each component in the federation, the destination model 

translator is only concerned with those FEs that include a CCR defined for the destination 

system.  Consequently, information extracted from the FIOM for the system’s destination 

model translator would consist of any FE that includes a CCR defined for that system.  

These FE’s would include the FCR Schema Inheritance Hierarchy used to resolve 

differences in view between the federation model of the imported information and 

operation signatures and the destination system’s component model as well as the 

translations required to resolve representational differences between corresponding 

views.  However, if a single destination model translator is implemented for all of the 

components in the federation, the translator would require the information contained in 

all of the FE’s in the FIOM. 

For the initial OOMI IDE prototype, a single source and destination model 

translator is implemented for all of the components in the federation.  Therefore the 

Translator Information Database includes the entire FIOM for the federation. 
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4. Federation Ontology Manager 
The Federation Ontology Manager provides the capability to create and manage a 

federation-specific ontology of terms and representations used for defining the federation 

representations of the real-world entities involved in the interoperation among systems.    

The Federation Ontology Manager enables a designated member from the federation 

development team to create an initial Federation Ontology for the FIOM under 

construction and to control subsequent modifications to the ontology.  The initial 

Federation Ontology can be constructed from an industry, organization, or domain 

specific ontology such as DISA’s DII COE XML Registry or DMSO’s FDMS, or created 

specifically for the FIOM under development [DII01, FDM01].  In addition, when FIOM 

requirements necessitate use of terminology outside of that provided by the industry, 

organization, or domain ontology used as the Federation Ontology baseline, the 

Federation Ontology Manager supports creation of a change recommendation to the 

baseline ontology. 

Specifically, the Federation Ontology Manager provides the capability to: 

• Search an industry, organization, or domain-specific ontology for terminology 
related to the federation domain, 

• Import relevant information into the Federation Ontology, 
• Supplement the industry, organization, or domain specific ontology with 

federation unique terminology, and  
• Capture the federation unique terminology to support industry, organization, or 

domain-specific ontology change recommendation. 
 
For the initial OOMI IDE prototype, the interoperability engineer is required to 

provide the terminology and representation used for elements of the federation model 

during FE creation.  Implementation of the Federation Ontology Manager is planned for 

future versions of the OOMI IDE prototype. 

5. FIOM Database 
The OOMI IDE is used to construct an object model of the real-world entities 

whose information and operations are shared among systems in a federation.  A separate 

object model, termed an FIOM under the OOMI, is constructed for each federation or 

federation configuration considered for interoperability using the OOMI.  For each 

federation or federation configuration, a unique FIOM is created, each consisting of a 
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collection of Federation Entities (FEs), the components comprising each FE, and the 

relationships linking the FEs and their constituent parts.  For each FIOM created or under 

construction, the OOMI IDE maintains a data store of the FIOM components and their 

relationships in order that the interoperability engineer might incrementally construct the 

FIOM over time or use an existing FIOM as a baseline for deriving an interoperability 

model for a new federation.  The FIOM database provides the persistent storage 

mechanism for maintaining a FIOM’s contents in the OOMI IDE.  The Initial OOMI IDE 

prototype uses XML data binding technology for achieving the FIOM persistent storage 

capability [BOD01, Lee02]. 

6. Translation Library 
The Translation Library provides a store of common functions for use in 

constructing FCR-CCR Translation class methods.  The Translation Generator will 

provide the capability for searching the store for pertinent translation functions and for 

including them in the translation skeleton generated from the user-identified mapping of 

CCR and FCR Schema attributes and operations.  The Translation Library and associated 

search functionality are planned for implementation in a future OOMI IDE prototype. 

7. Federation Ontology Database 
The Federation Ontology Database contains a compilation of the “standard” 

terminology and representations to be used when constructing the federation 

representation of the real-world entities involved in the interoperation among systems.  

This federation ontology should be used for defining the names, data types, field lengths, 

integrity constraints, etc. used in FE, FEV, FCR and FCR Schema construction.  Creation 

and management of the database is provided by the Federation Ontology Manager 

discussed in Section V.D.4.  The Federation Ontology Database is planned for a future 

OOMI IDE prototype release. 

8. Translator Information Database 
The Translator Information Database contains a translator-specific extract from 

the FIOM database created for each translator in a federation.  Information contained in 

the database for each federation translator consists of any FE that includes a CCR defined 

for the system or systems that the translator interfaces with.  For the initial OOMI IDE 

prototype, a single data store including all of the FEs contained in the FIOM is provided.  
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Persistent storage of the Translator Information Database is provided using XML data 

binding technology [BOD01, Lee02]. 

E. OOMI IDE PROTOTYPE USER INTERFACE DESIGN 

1. OOMI IDE GUI Components 
To support the FIOM construction process described in Section V.C, the OOMI 

IDE GUI provides the following components as depicted in Figure V-3.  The FIOM 

Construction Phase Folders provide user access to the IDE functionality and information 

displays used to support the five phases of FIOM construction covered in Section V.C.  

The OOMI IDE Toolbar enables the interoperability engineer to select the functionality 

necessary for constructing an interoperability object model for a specified federation of 

systems.  The Directory Pane provides a hierarchical listing of either the component 

system or federation model representation of the real-world entities whose state and 

behavior are to be shared between systems in the federation, depending on FIOM 

construction phase.  The Display Pane provides either a textual or graphical 

representation of the component system external interfaces, a class representation of 

those external interfaces, or a graphical representation of the federation model, including 

the entities, views, and representations that comprise the model.  Again, the information 

displayed is dependent on the FIOM construction phase. 

2. FIOM Construction Phase Folders 
The OOMI IDE uses a series of five tabbed folders to distinguish the functionality 

and display information available during the five phases of FIOM construction.  The 

tabbed folders corresponding to the five FIOM construction phases are: ADD Component 

System External Interface, MANAGE Federation Entities, REGISTER Component Class 

Representation (CCR), UPDATE Federation Ontology, and GENERATE System-

Specific Translator Information. 

3. OOMI IDE Toolbar, and Directory and Display Panes 
Functionality available via the OOMI IDE Toolbar and information presented via 

the Directory and Display Panes varies based on the FIOM construction phase.  In 

addition, certain display information is only displayed in specific construction phases.  

An overview of the toolbar, directory and display panes, and other support windows 

contents is provided for each of the FIOM construction phase folders. 
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FIOM Construction Phase Folders

OOMI IDE Toolbar

Directory Pane Display Pane

 

Figure V-3. OOMI IDE GUI Components 

 
a. ADD Component System External Interface 
In the first folder, ADD Component System External Interface, the IDE 

provides functionality via the OOMI IDE Toolbar to 1) load the XML Schemas that 

define the external interface of a component system in the federation, 2) generate a 

Component Class Representation (CCR) for each component model of a real-world entity 

defined by the XML Schema comprising the system’s external interface definition, and 

3) generate the syntactic and semantic information for the CCR used to correlate 

component and federation representations of the real-world entities involved in the 

interoperation.  During this phase, the Directory Pane is used to provide a hierarchical 

listing of the CCRs generated from the component system external interface while the 

Display Pane is used initially to view the contents of the component system’s external 

interface definition, and subsequently to view the content of the component classes 

generated from that definition.  The XML Schema used to define the component system 

external interface can be viewed as either a textual or graphical representation.  
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Generated component classes can be viewed either as the programming language 

representation of the class or as the corresponding Unified Modeling Language (UML) 

representation [BRJ99]5.  Toolbar, Directory, and Display contents for the Add 

Component System External Interface folder are illustrated in Figure V-4. 

 

 

Figure V-4. ADD Component System External Interface Folder Display and 
Functionality 

 
b. MANAGE Federation Entities 
In the second folder, MANAGE Federation Entities, the Directory Pane 

provides a hierarchical listing of FIOM composition.  The Display Pane provides a 

graphical UML depiction of the selected FIOM information5.  The OOMI IDE Toolbar 

provides the capability for selecting the information to be displayed in the Display Pane 

as well as specifying the level of FIOM detail that the interoperability engineer wants to 

display.  This capability provides three levels of abstraction for displaying the model of 

                                                 
5  Class models are viewed as a tree structure vice a UML diagram in the initial 

OOMI IDE prototype. 
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the federation interoperation- the FIOM level for an overview of the entities comprising 

the interoperation for the entire federation, the Federation Entity (FE) level for 

displaying a specific interoperation entity, or the Federation Entity View (FEV) level for 

seeing the details of the federation representation of a view.  In addition, the OOMI IDE 

Toolbar provides the capability to modify the contents of the FIOM by adding or 

removing entities (FEs), entity views (FEVs), or Federation Class Representations 

(FCRs) comprising the interoperation.  Figure V-5 illustrates the contents of the Toolbar, 

Directory, and Display for the MANAGE Federation Entities folder. 

 

 

Figure V-5. MANAGE Federation Entities Folder Display and Functionality 

 
c. REGISTER Component Class Representation 
In the REGISTER Component Class Representation (CCR) folder the 

Directory Pane provides a hierarchical listing of CCRs to be added to the FIOM.  The 

OOMI IDE Toolbar includes the functionality available in the MANAGE Federation 

Entities folder and adds the capability for adding a CCR to the FEV whose FCR Schema 
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attribute and operation sets exhibit a one-to-one correspondence with the CCR Schema’s 

attribute and operation sets.   

In addition to the normal Directory and Display Panes, a Class 

Correlation Window is displayed in the REGISTER CCR folder in order to help the 

interoperability engineer locate the federation view representation corresponding to a 

component system class representation being registered.  It provides the capability to 

screen federation entities using the syntactic and semantic information stored with a CCR 

and FCR.  The capability to set a threshold value for determining the display of screening 

results is provided for each screening phase as well as the capability to view the results of 

the correlation effort for verification by the interoperability engineer.  Toolbar, Directory, 

and Display contents for the REGISTER CCR folder are illustrated in Figure V-6. 

 

Class Correlation Window

 

Figure V-6. REGISTER Component Class Representation Display and Functionality 

 
Coincident with the capability for adding a CCR to the FEV is the 

functionality to define the translations required to resolve differences between the 

federation and component representations of the view depicted by the FEV’s FCR 
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Schema and the CCR Schema being registered.  In addition to providing the capability to 

display the information presented in the MANAGE Federation Entities folder, the 

Display Pane includes a Translation Generation window, shown in Figure V-7, that 

provides the capability to match attributes and operations from corresponding FCR and 

CCR Schemas during translation definition. 

Translation Generation Window

 

Figure V-7. REGISTER CCR Folder Translation Generation Window 

 
From this mapping of FCR and CCR Schema attributes and operations, the 

Translation Generator creates a translation framework that the interoperability engineer 

can modify by adding functions from the Translation Library or other custom conversion 

methods as required.  Figure V-8 depicts the resulting translation skeleton created from 

the attribute and operation mapping previously identified by the interoperability engineer. 

d. UPDATE Federation Ontology 
The UPDATE Federation Ontology folder replaces the Directory and 

Display panes displayed in the three prior folders with the Federation Ontology Window.  

The Federation Ontology window provides the capability to search a designated industry, 
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organization, or domain-specific ontology for terminology related to the real-world 

entities involved in the interoperation among systems.  The Federation Ontology Window 

provides toolbar selections to facilitate the search and to add selected search results to the 

federation ontology.  The toolbar also enables the ontology librarian to extend the 

federation ontology with program-approved terminology based on nominations from the 

interoperability engineer entered during the Manage Federation Entities or Register CCR 

phases.  Finally, the UPDATE Federation Ontology folder OOMI IDE toolbar provides 

the functionality for providing a report of the terminology extensions approved by an 

ontology librarian for use in submitting recommendations to the appropriate naming 

standardization authority.  Implementation of the UPDATE Federation Ontology folder 

is not included in the initial OOMI IDE prototype. 

 

Translation Skeleton

 
Figure V-8. Translation Generated During REGISTER CCR Phase 

 
e. GENERATE System-Specific Translator Information 
The GENERATE System-Specific Translator Information folder enables 

the interoperability engineer to extract the specific FIOM information needed by a 
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component system’s translator.  The toolbar provides functionality to select a component 

system for extracting system-specific translator information from the FIOM and to 

designate the location for storing such information for a component system translator’s 

use.  The Directory Pane provides a list of the FEs contained in a specified FIOM, 

enabling display of their components.  The Display Pane is used for viewing the dialog 

boxes used by toolbar functionality.  The GENERATE System-Specific Translator 

Information folder is not implemented in the initial OOMI IDE prototype. 

F. SUMMARY 
Under the Object-Oriented Method for Interoperability (OOMI) an integrated 

model of the real-world entities whose state and behavior are shared among systems in a 

federation, a Federation Interoperability Object Model (FIOM), is constructed prior to 

runtime for use in resolving differences among component system models of those real-

world entities during runtime system interoperation.  In this chapter, the process for 

constructing an FIOM is suggested and several areas where computer aid could be 

applied to the process identified.  From the suggested FIOM construction process and 

areas identified for computer aid application, a top-level design for the construction of an 

OOMI IDE prototype is proposed.  Included in the proposed top-level design, is the 

design for the candidate user interface implemented in an initial prototype of the OOMI 

IDE.  Design and implementation of the prototype IDE for the OOMI were initiated in 

[CY01] and continued under [Lee02] and [She02]. 
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VI. COMPONENT SYSTEM OBJECT CORRELATION UNDER 
THE OBJECT ORIENTED METHOD FOR 

INTEROPERABILITY (OOMI) 
 
 
 

A. CORRELATION OF COMPONENT SYSTEM AND FEDERATION 
REPRESENTATIONS OF A REAL-WORLD ENTITY 
As discussed in the Chapter III introduction, the first step in constructing an 

interoperability object model for a federation of systems, the Federation Interoperability 

Object Model (FIOM), is determining the real-world entities that define the 

interoperation among systems.  Identification of these real-world entities, modeled as 

Federation Entities (FEs) in the OOMI, can be done in either a top-down or bottom-up 

manner.  When done top-down, the interoperability engineer uses his knowledge of 

information to be shared between systems to define the FEs.  When defined bottom-up, 

the interoperability engineer must reconcile information exposed by the component 

systems in the federation to identify opportunities for data exchange or joint task 

execution.  This information is used to define the FEs that delineate the interoperation 

among systems. 

Top-down definition of FEs is fairly straightforward.  The Manage Federation 

Entities capability provided in the OOMI Integrated Development Environment (IDE) 

enables the interoperability engineer to specify an FE for inclusion in the FIOM from 

information either 1) included in an XML Schema specification of the federation 

representation of a real-world entity, 2) contained in the Federation Ontology, or 3) input 

by the interoperability engineer.  An XML Schema specifying the federation 

representation of a real-world entity might be available in the event that one of the 

component system definitions of a real-world entity were designated as the “standard” or 

federation representation with which other component representations must interoperate.  

Information required for FE definition could also be extracted from the Federation 

Ontology if sufficient information were available or input by the interoperability engineer 

otherwise. 
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Bottom-up definition of FEs is more involved.  Because of potential variations in 

what information different component systems might view as important to model and 



differences in how that information might be represented, it might not be obvious that 

two systems are referring to the same real-world entity.  By reconciling information 

contained in the external interfaces of federation components, the interoperability 

engineer can determine when systems refer to the same real-world entities and can use 

this information to specify the FEs defining the interoperation among systems.  This can 

be done in one of two ways.  One option is to compare the information exposed in the 

external interface of all of the components in the federation in order to determine areas of 

commonality for use in defining the FEs.  Another option is to compare the information 

exposed in the external interface of a component system against previously registered 

FEs to determine if they refer to the same real-world entity as the component system 

being registered, adding a new FE when a corresponding model of the real-world entity 

cannot be found in the FIOM. 

As discussed in Section IV.C.1.b an FE encapsulates both the component and 

federation representations of real-world entities involved in the interoperation among a 

federation of systems.  In order to distinguish between differences in scope, level of 

abstraction, or temporal validity of the attributes and operations used to model the same 

real-world entity on different systems, one or more Federation Entity Views (FEVs) will 

be defined for each FE.  In addition, differences in how an FEV is represented on a 

specific system due to heterogeneities of hardware and operating systems, organizational 

models, structure, presentation, or meaning are captured as various Component Class 

Representations (CCRs) of that FEV.  Finally the federation representation of an FEV is 

modeled in the FIOM as a Federation Class Representation (FCR). 

Following definition of the FEs used to represent the real-world entities involved 

in the interoperation among systems, correspondence must be established between a 

component representation of a real-world entity, modeled as a CCR in the FIOM, and the 

federation representation, modeled as the FCR.  The method chosen for bottom-up 

identification of FEs in the initial OOMI prototype implementation is to compare the 

component representation of a real-world entity against the FEs previously added to the 

FIOM, adding new FEs when a corresponding model of the real-world entity cannot be 

found in the FIOM. 
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The correlation of component system and federation representations of a real-

world entity is the focus of this chapter.  A detailed discussion of the correlation 

methodologies incorporation in the OOMI IDE is presented. 

B. OOMI CORRELATION METHODOLOGY 
The correlation methodology selected for the OOMI IDE is an adaptation of 

existing research in the information retrieval and software reuse communities to the 

problem of determining correspondence between different representations of the same 

real-world entity.  The principle goal of the OOMI correlation methodology is to provide 

a phased approach that results in increasing precision in class correlation while 

maintaining a high level of recall.  Thus, a multi-level approach was chosen for 

correlation of component and federation representations in the OOMI IDE. 

The approach first exploits semantic information found in textual descriptions of 

the component and federation representations of a real-world entity.  A keyword 

matching technique similar to that used in Personal Librarian’s (PL’s) full-text retrieval 

capability [BFH+95] is used to compare component system descriptive information with 

corresponding information maintained for the federation representation of the real-world 

entities involved in the interoperation.  This first phase is designed to eliminate federation 

representations that are obviously not related to the component representation being 

registered from further consideration by the computationally more expensive second 

phase.  The IDE provides two mechanisms for down-selecting the list of candidates for 

consideration by the second phase.  First, the IDE enables the interoperability engineer to 

set a semantic correlation threshold value based on the percentage of keywords matched 

between component and federation representations for display of candidate matches.  

Second, the interoperability engineer can selectively choose from the list of federation 

representations whose percentage of keywords matched is above the threshold value to 

pass-through to the second phase.  Details of the semantic matching process are contained 

in Section VI.B.2.a. 
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The second phase of the correlation effort uses a neural network based approach 

similar to that used by Li and Clifton in SEMINT [LC94] to explore structural similarities 

between component and federation representations to determine their correspondence.  Li 

and Clifton’s use of database content information in SEMINT provided a limited seman-



tic discrimination capability.  Using the database content, they were able to distinguish 

between two elements that had the same structural characteristics but whose actual values 

indicated that they were not related.  For example, by using data content statistics one 

might be able to distinguish between an employee ID and a transaction timestamp, even 

though both items could use a six-digit integer to represent them.  The neural network 

based approach used in the OOMI IDE is focused on the use of field specification level 

information for determining syntactical correspondence between representations.  

However, additional data content level information such as may be available with pattern 

limitations, minValue, maxValue type constraints, or through run-time collection may be 

exploited to provide a semantic correlation capability as well.  Sections VI.B.1.b and 

VI.B.2.b provide details of the OOMI IDE syntactic correlation process. 

1. Generating Syntactic and Semantic Information Used in the 
Correlation Process 

The first step in the correlation process is the generation of the syntactic and 

semantic information needed for component and federation model correlation.  As 

introduced in Chapter V, this information is generated for each CCR during the Add 

Component System External Interface phase of the FIOM construction process.  

Equivalent information is generated for an FCR as FEs are added to the FIOM during 

either the Manage Federation Entities or Register CCR phases.   

a. Generating Components Used By Semantic Matching Process 
As discussed in Section VI.B, the OOMI semantic matching process uses 

a keyword matching technique similar to that used in PL’s full-text retrieval capability.  

In order to correlate component and federation representations of a real-world entity, the 

semantic matching algorithm requires a list of keywords used by the component system 

and the federation to describe a real-world entity.  Keyword information for a component 

system representation of a real-world entity is included in the XML Schema(s) used to 

characterize the component system’s external interface.  For the federation representation 

of a real-world entity, this information can be obtained from an XML Schema 

representation of that information, extracted from the Federation Ontology, or directly 

entered by the interoperability engineer.  Table VI-1 provides a list of the fields defined 

in the XML schema from which keyword descriptions can be obtained [Pug01]. 
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Table VI-1. XML Schema Fields Used for Keyword Determination (From [Pug01]) 
Field 

 

Attribute Details 
xsd:element “name” The name attribute typically equates to the field name used in 

the underlying database. 

xsd:element “type” For schemas using global types. This attribute’s value is usually 
descriptive of the kind of data in the subtype. (e.g. “date_type”) 

xsd:documentation N/A The text in this element is the “description” field from the data 
dictionary.  It is typically a human-readable free text explanation 
of the field’s use or format. 

xsd:attribute “name” Gives amplifying information about a simple or complex type. 

xsd:enumeration “value” Used to constrain the values of types.  Usually used to limit a 
message field to several values which will reveal the use of the 
message (e.g.. “SUB”, “SURF”, “AIR”) 

 
 

Keyword information for the component representation of a real-world 

entity is obtained from the XML Schema used to define a component system’s external 

interface.  Keyword information is not extracted directly from the XML Schema, but 

instead it is obtained from the CCR Schema created from this information during the Add 

Component System External Interface phase of FIOM construction.  Keyword 

information is extracted from the CCR Schema and stored with a CCR as a CCR 

Semantics component. 

Keyword information for the federation representation of a real-world 

entity is obtained from an XML Schema used to describe the real-world entity, from 

information describing the entity input by the interoperability engineer taken from the 

Federation Ontology, from information specified by the interoperability engineer, or from 

a combination of the three sources.  Keyword information is not extracted directly from 

these sources for use in the semantic correlation process.  Instead, it is obtained from the 

FCR Schema created from this information during the Manage Federation Entities or 

Register CCR phases of FIOM construction.  Keyword information is extracted from the 

FCR Schema and stored with an FCR as an FCR Semantics component.  Use of CCR and 

FCR Schema for constructing CCR and FCR Semantics components provides a 

consistent source for required keyword information and eliminates potential difficulties 
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encountered during construction of CCR and FCR Semantics components when adding a 

new view to a Federation Entity during FIOM construction. 

b. Generating Components Used By Syntactic Matching Process 
As was seen with the semantic matching process, component system 

external interface XML schemas are built from the component system data dictionaries 

and data definition language.  In addition to the information used by the semantic 

matching process, these XML schemas contain added data used by the syntactic matching 

process.  This includes information regarding schema structure, data element type, 

frequency of occurrence, data size specifications, and data value constraints.  This 

syntactic information is also included in the generated CCR and FCR Schemas as was the 

case with the semantic information.  

The additional syntactic information contained in the CCR or FCR Schema 

component is used to support a neural network based syntactic matching process.  The 

schema information required to support the syntactic matching process is captured in a 

CCR or FCR Syntax component that is added to the FIOM directory.  The neural network 

based process uses two different subcomponents to support the correlation effort.  The 

first subcomponent, the CCR or FCR Syntax Vector, is associated with both CCR and 

FCR Syntax components and contains a number of discriminator vectors used to capture 

the data content and structure information from a CCR or FCR Schema.  The second 

subcomponent, the FCR Syntax Net, is associated only with an FCR Syntax component 

and contains a trained neural network for an FCR that is used in the correlation process. 

A discriminator vector is an array of values in the range [0.0, 1.0] used to 

represent the data content and structure of each attribute and operation in the CCR or 

FCR Schema.  Information used to construct the discriminator vector is extracted from 

the CCR and FCR Schema as was done in constructing the CCR and FCR Semantics 

components in Section VI.B.1.a.  The discriminator vectors are added to the CCR or FCR 

Syntax Vector subcomponent, as appropriate. 
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The discriminator vectors are used by a neural network based matching 

technique to correlate component and federation representations of a real-world entity.  

Discriminator vectors in each FCR Syntax Vector subcomponent are used to train a 

neural network for the associated FCR Schema for later comparison with CCR Schemas 



to determine if the FCR and CCR correspond to the same real-world entity in the problem 

domain.  A discriminator vector from the CCR Syntax Vector subcomponent 

corresponding to an attribute or operation in the CCR Schema is provided as input to the 

trained neural network and an evaluation of the similarity between the CCR Schema 

attribute or operation and each attribute and operation in the FCR Schema is conducted. 

The process for creating a discriminator vector is similar for both a CCR 

and FCR.  The first step is to create a CCR or FCR Syntax component with included 

Syntax Vector subcomponent and add it to the FIOM directory.  The CCR or FCR Syntax 

Vector subcomponent contains a discriminator vector for each attribute and operation in 

the CCR or FCR Schema.  The discriminators used in creating a discriminator vector 

differ between those used for creating a schema attribute vector and those used for 

creating a schema operation vector. 

Each component of the CCR or FCR Schema is first evaluated to 

determine whether it is an attribute or operation.  Data content and structure information 

used by the OOMI IDE for creating an attribute’s discriminator vector includes 

information concerning: 

• data element structure, 
• data element type, 
• frequency of occurrence, 
• data size specifications, and  
• data value constraints  

 
For attributes, the first data element structure discriminator, isComplex, 

distinguishes whether an attribute is complex or atomic.  If the attribute is complex (i.e. 

the attribute is itself an object), discriminators numSubtypes, numReqdSubtypes, and 

numOptSubtypes count the total, required, and optional number of subtypes defined for 

that attribute, respectively.  In addition, discriminator numOperations counts the total 

number of operations defined for a complex attribute and its subtypes; numParameters 

similarly counts the total number of parameters required by all the operations defined for 

a complex attribute and its subtypes. 

For atomic attributes, type specification discriminators indicate whether an 

attribute is of type string, boolean, float, int, etc.  For complex attributes the type 
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specification discriminators provide a sum of the number of attributes of each type that 

are defined for the complex attribute and all of its subtypes. 

Frequency of occurrence discriminators minOccurs and maxOccurs 

specify the minimum and maximum times an attribute may be included in a real-world 

entity model.  Data size specifications minLength and maxLength specify the minimum 

and maximum length of an atomic attribute of type string, whereas for complex attributes 

these discriminators specify the sum of the minLengths or maxLengths of all string 

subtypes.  Discriminators totalDigits and fractionDigits provide a count of the total digits 

and fractional digits for attributes of type bigDecimal.  For complex attributes these 

values indicate the sum of the totalDigits or fractionDigits for all bigDecimal subtypes. 

The first data value constraint discriminator, pattern, indicates whether a 

restriction has been placed on the values allowed for string or numeric types.  For atomic 

attributes the discriminator is Boolean; for complex attributes the pattern discriminator 

provides a count of the number of attributes among its subtypes that have a pattern 

defined.  Data value constraint numEnumerations provides a count of the number of 

enumeration values specified for an atomic attribute or the sum of the number of 

enumeration values of a complex attribute’s subtypes.  Finally, minExclusive, 

maxExclusive, minInclusive, and maxInclusive discriminators specify a lower and upper 

bound to the values allowed for numeric types. 

Information contained in an operation’s discriminator vector is limited to a 

total count of the number of parameters required for operation invocation, and a count of 

the number of parameters by type.  For CCR or FCR Schemas whose operation 

parameters are taken from its list of attributes, including additional values in the 

operation’s discriminator vector would result in duplication of the information already 

contained in the attribute discriminator vectors without providing any additional support 

for discrimination among FCRs.  Future correlator enhancements may include additional 

operation parameter discriminators for those operation parameters that are distinct from a 

CCR or FCR Schema’s attributes.  Table VI-2 provides a list of the discriminators that 

comprise a discriminator vector for each attribute or operation. 
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Table VI-2. Metadata Based Discriminators Used in Syntactic Correlation Process 
(After [She02]) 

Number Discriminator Description 
 

Structural Information 
1 propertyType Operation or Attribute 
2 isComplex Describes whether an attribute is complex or atomic 
3 numSubtypes If attribute is complex, number of subtypes  
4 numReqdSubtypes If attribute is complex, number of required subtypes 
5 numOptSubtypes If attribute is complex, number of optional subtypes 
6 numOperations For Complex Attribute – total no. of operations defined for type  
7 numParameters For Operation – number of parameters 

For Complex Attribute – Sum of parameters for all operations 
defined for that attribute and any subtypes 

Type Specifications 
8 string type java.lang.String type 
9 boolean type  primitive Boolean type 
10 float type primitive float type 
11 double type primitive double type 
12 bigDecimal type java.math.BigDecimal type 
13 int type primitive int type 
14 long type primitive short type 
15 short type primitive short type 
16 other type type other than listed above 

Frequency of Occurrence 
17 minOccurs minimum number of times attribute must occur in class modeling 

real-world entity 
18 maxOccurs maximum number of times attribute may occur in class modeling 

real-world entity 
Data Size Specification 

19 minLength For Atomic String Type Attribute – minimum length of string 
For Complex Attribute– Sum of minLengths of all string 
subtypes 

20 maxLength For Atomic String Type Attribute – maximum length of string 
For Complex Attribute – Sum of maxLengths for all string 
subtypes 

21 totalDigits For Atomic bigDecimal Type Attribute – total number of digits 
included in attribute 
For Complex Attribute – Sum of total number of digits for all 
bigDecimal types 

22 fractionDigits For Atomic bigDecimal Type Attribute – number of digits in 
fraction part of attribute 
For Complex Attribute – Sum of total number of digits in 
fraction part for all bigDecimal types 
Data Value Constraints 

23 pattern For Atomic Attribute – restriction to values allowed for string 
and numeric types 
For Complex Attribute – number of attributes with pattern 
defined 

24 numEnumerations For Atomic Attribute – number of enumeration values for 
attribute 
For Complex Attribute – sum of number of enumeration values 
for all subtypes 

25 minExclusive lower open bound of interval defined for numeric attribute types 
26 maxExclusive upper open bound of interval defined for numeric attribute types 
27 minInclusive lower closed bound of interval defined for numeric attribute 

types 
28 maxInclusive upper closed bound of interval defined for numeric attribute 

types 

For Atomic Attributes – Specify the
data type 

For Complex Attributes – sum of
the number of subtypes of each
type 

For Operations – sum of the number
of parameters of each type 
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Neural network input values for the OOMI IDE syntactic correlator are 

required to be in the range [0.0, 1.0], signifying whether a neuron is triggered or not.  In 

order to satisfy this requirement, an algorithm must be provided mapping the metadata 

provided for each attribute parameter to a discriminator value in the range [0.0, 1.0]. 

For some discriminators, such as minOccurs and pattern (for atomic 

attributes), the Boolean nature of the discriminator enables a direct map to a 0 or 1 value.  

Other parameters, such as numSubtypes, numReqdSubtypes, numOptSubtypes, 

numOperations, numParameters, maxOccurs, minLength, maxLength, totalDigits, 

fractionDigits, numEnumerations, minExclusive, maxExclusive, minInclusive, and 

maxInclusive must be normalized to a value in the range of [0.0, 1.0].  For these values Li 

and Clifton used a SIGMOID-like function in order to avoid false matches or false drops 

that could occur when using a linear normalization function.  For positive numeric values 

in the range of [0.0, 100.0] Li and Clifton used the function 

 
f(x) = 2 * (1/(1 + k-x) – 0.5)   with k = 1.01 [Eq 6.1] 

 

where x is the parameter value to be normalized [LC00].  For other numeric values that 

may be positive or negative, they used the function 

 
f(x) = 1/(1 + k-x) [Eq 6.2] 

 

with k = 1.01 for values in the range of [-50.0, 50.0].  As each of the parameters 

numSubtypes, numReqdSubtypes, numOptSubtypes, numOperations, numParameters, 

maxOccurs, minLength, and numEnumerations are expected to have values in the range 

[0.0, 100.0], we have adapted the function from Eq 6.1 for normalizing these parameters.  

As parameters maxLength, totalDigits, and fractionDigits may have values that exceed 

100 for complex attributes, a third function 

 
f(x) = log(x + 1)/5 [Eq 6.3] 

 

has been defined which provides adequate discrimination between values in the range of 

[0, 100000]. Similarly, while parameters minExclusive, maxExclusive, minInclusive, and 

maxInclusive may have either positive or negative values, suggesting the use of Eq 6.2 
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for normalizing their values, the potential to exceed the bounds of [-50.0, 50.0] 

prescribed for use of that equation has led to the use of Eq 6.3 for normalizing these 

parameters as well. 

Finally, for parameters such as an atomic attribute’s data element type, the 

parameter is mapped to a vector of values, each in the range [0.0, 1.0].  This is done in 

cases where the value assigned two parameters might incorrectly convey similarity 

between the parameters.  For example, for atomic data types, assigning a string parameter 

a value of 0.1, a boolean a value of 0.2, a float a value of 0.3, etc. would imply that an 

attribute of type string is more like a boolean than a float.   However, if we instead assign 

each possibility a vector of values where each value in the vector is either 0.0 or 1.0, then 

we eliminate any incorrectly perceived “closeness” between values.  For example, if we 

represented a string by the vector <0.0, 0.0, 1.0>, a boolean by the vector <0.0, 1.0, 0.0> 

and a float by the vector <1.0, 0.0, 0.0> then each would stimulate its own neuron in the 

neural network and there would be no incorrect perceptions as to the relationships 

between values.  Table VI-3 and Table VI-4 provide a list of the discriminators used in 

the OOMI IDE and the normalized value added to the attribute or operation parameter 

discriminator vector for the listed discriminator value. 

In addition to the CCR or FCR Syntax Vector subcomponents created for 

the CCR and FCR, a trained neural network is created for each federation entity FCR.  

The OOMI IDE uses a back-propagating neural net that is trained using supervised 

learning until it maps all neuron stimuli values to the desired outputs within a given 

threshold.  The threshold value is set by the interoperability engineer using the OOMI 

IDE GUI. 
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Table VI-3. Discriminator Values Used for Syntactic Correlation (After [She02]) 

Number Discriminator Value to Vector 
 

Structural Information 
1 propertyType Operation – 0.0 

Attribute – 1.0  
2 isComplex If yes – 1.0 

Otherwise – 0.0 
3 numSubtypes For operation or atomic attribute – 0.0  

For complex attribute - Value normalized to [0.0, 1.0]  Note 1 
4 numReqdSubtypes For operation or atomic attribute – 0.0  

For complex attribute - Value normalized to [0.0, 1.0]  Note 1 
(subtype required unless minOccurs = 0) 

5 numOptSubtypes For operation or atomic attribute – 0.0  
For complex attribute - Value normalized to [0.0, 1.0]  Note 1 

(subtype optional only if minOccurs = 0) 
6 numOperations For operation or atomic attribute – 0.0  

For complex attribute - Value normalized to [0.0, 1.0]  Note 1 
7 numParameters For atomic attribute – 0.0  

For operation – Value for # of parameters normalized to [0.0, 1.0]  Note 1 
For complex attribute – Value for sum of parameters for all operations 

in subtype normalized to [0.0, 1.0]  Note 1 
Type Specifications 

8 string type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

9 boolean type  If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

10 float type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

11 double type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

12 bigDecimal type If atomic attribute – < 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

13 int type If atomic attribute – < 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

14 long type If atomic attribute – < 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

15 short type If atomic attribute – < 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

16 other type If atomic attribute – < 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 > 
If complex attribute or operation – Value normalized to [0.0, 1.0]  Note 1 

 
Note 1:  Uses Eq 6.1: f(x) = 2 * (1/(1 + k-x) – 0.5)   with k = 1.01 
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Table VI-4. Discriminator Values Used for Syntactic Correlation (continued) (After 
[She02]) 

Number Discriminator Value to Vector 
 

Frequency of Occurrence 
17 minOccurs If Optional – 0.0  

Otherwise – 1.0  
18 maxOccurs If not specified – Raw value = 1, normalized to [0.0, 1.0]  Note 1 

Otherwise - Value normalized to [0.0, 1.0]  Note 1 
Data Size Specification 

19 minLength If operation, attribute not string, or minLength not specified – 0.0; 
Otherwise - Value normalized to [0.0, 1.0]  Note 1 

20 maxLength If operation, attribute not string, or maxLength not specified – 0.0; 
Otherwise - Value normalized to [0.0, 1.0]  Note 2 

21 totalDigits If operation, attribute not bigDecimal, or totalDigits not specified – 0.0; 
Otherwise - Value normalized to [0.0, 1.0]  Note 2 

22 fractionDigits If operation, attribute not bigDecimal, or fractionDigits not specified – 
0.0; 

Otherwise - Value normalized to [0.0, 1.0]  Note 2 
Data Value Constraints 

23 pattern If Atomic – If pattern defined – 1.0 
                   Else 0.0 
For Complex Attribute – Value normalized to [0.0, 1.0]  Note 1 

24 numEnumerations If operation or numEnumerations not specified – 0.0; 
Otherwise, Value normalized to [0.0, 1.0]  Note 1 

25 minExclusive If operation, attribute not numeric, or minExclusive not specified – 0.0; 
Otherwise - Value normalized to [0.0, 1.0]  Note 2 

26 maxExclusive If operation, attribute not numeric, or maxExclusive not specified – 0.0; 
Otherwise - Value normalized to [0.0, 1.0]  Note 2 

27 minInclusive If operation, attribute not numeric, or minInclusive not specified – 0.0; 
Otherwise - Value normalized to [0.0, 1.0]  Note 2 

28 maxInclusive If operation, attribute not numeric, or maxInclusive not specified – 0.0; 
Otherwise - Value normalized to [0.0, 1.0]  Note 2 

 
Note 1:  Uses Eq 6.1: f(x) = 2 * (1/(1 + k-x) – 0.5)   with k = 1.01 
Note 2:  Uses Eq 6.3: f(x) = log(x + 1)/5 

 
As shown in Figure VI-1, the back-propagating neural net used in the 

OOMI IDE consists of a totally connected network of nodes that can be divided into three 

layers.  The first layer, the input layer, contains N nodes, corresponding to the N 

discriminators chosen to characterize the attributes and operation parameters from a CCR 

or FCR Schema.  The third layer, the output layer, contains M nodes, corresponding to 

the M attribute and operation parameters contained in the FCR Schema.  The second, 

middle, layer is a hidden layer consisting of (N + M) / 2 nodes connecting the input and 

output layers used in training the network. 
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The network is trained by first assigning nominal weights to the edges of 

the network, which is done automatically by the training algorithm.  Then, the 

discriminator vectors constructed for the attribute and operations of the neural net’s 

corresponding FCR Schema are input to the network and an output determined for the 

specified edge weights.  This output is compared with the desired output for each 

attribute or operation.  The desired output for an attribute or operation consists of a 

unique vector of M zeroes and ones, where M is the number of attributes and operations 

contained in the FCR Schema.  The edge weights are adjusted and the training effort 

continued until the actual output is within tolerance of the desired result, as specified by 

the user-entered threshold value.  Once the error is reduced below the threshold value, the 

network is considered trained and it is saved in the FCR Syntax’s Net subcomponent for 

later use during component and federation class correlation. 
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Figure VI-1. Back-Propagation Neural Network Architecture in OOMI IDE (After 
[LC00]) 
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A description of the process used to create and train the neural network for 

the GroundCombatVehicle_View1 FCR Schema depicted in Figure IV-7 follows.  Input 

to the training algorithm consists of the discriminator vectors constructed for each 

attribute and operation in the FCR Schema.  For example, in Figure VI-2 the 

discriminator vectors for GroundCombatVehicle_View1 FCR_Schema attributes type, 

position, time, and range are shown.  These discriminator vectors, together with a target 

result for each attribute and operation are input to the neural network’s training 

algorithm.  The target result consists of a vector of zeroes and ones whose length is equal 

to the number of attributes and operations included in the FCR Schema.  For this example 

there are four attributes, type, position, time, and range, so there will be four values in the 

target result vector.  The target result vector will have a one as the first element and 

zeroes for the remaining elements for the first attribute or operation parameter, a one as 

the second element and zeroes for the remaining elements for the second attribute or 

operation parameter, etc. 

 

 

Figure VI-2. Example Neural Network Training Data and Target Result (After [She02]) 

 
Figure VI-3 shows the discriminator vector input and corresponding target 

result output values and their relationship to the neural network being trained.  When the 
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neural network is input with the discriminator vector for an attribute or operation 

parameter, the edge weights of the net will be adjusted until the output matches the target 

value, within the threshold value tolerance.  This process will be repeated for the 

remaining attributes and operation parameters until the network has been trained for all 

inputs.  At this point the network is considered trained and can be used to recognize other 

attributes or operation parameters having the same data content and structure.  
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Figure VI-3. Training OOMI IDE Neural Networks (After [LC00]) 

 
2. Using Syntactic and Semantic Information to Correlate Component 

and Federation Representations of Real-World Entities 
Using the syntactic and semantic information generated from the CCR and FCR 

Schemas, the OOMI IDE assists the interoperability engineer in establishing a 

correspondence between a component representation and the federation representation of 

the real-world entities involved in system interoperation.  Access to the correlation 

functionality is provided via the OOMI IDE Correlation Window during the Register 

CCR phase of FIOM development.  The Correlation Window outlines a two-step process 

for locating federation entities whose FCR Schema corresponds to the CCR Schema for a 

component system class being registered.  
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a. Semantic Correlation Process 
The first step of the correlation process, semantic correlation, screens 

FEVs using semantic information contained in their corresponding FCRs.  The user 

initiates the semantic correlation process by setting the semantic correlation threshold to 

the desired value and then selecting the CCR for which a match is desired.  The user can 

adjust the semantic correlation threshold value to selectively set the level for displaying 

potential matches.  Once the threshold value is set and the user selects “Filter Using 

Keywords”, the OOMI IDE will retrieve the CCR Semantics component for the CCR 

selected and sequentially examine the FCR Semantics component for each FEV in the 

FIOM.  From the FCR Semantics component the semantic correlator will obtain the count 

of the number of keywords in the CCR Semantics component matching a keyword in the 

FCR Semantics component.  The IDE will then normalize the count as the ratio of CCR 

Semantics keywords matching FEV FCR Semantics keywords to the total number of 

CCR Semantics keywords.  This count will then be saved as the FEV keyword score and 

the process repeated for the next FEV.  After all the FEVs have been examined, the FEVs 

will be ordered according to keyword match score, and the ordered list of FEVs whose 

keyword match score exceeds the threshold value will be output to the IDE Correlation 

Window. 

b. Syntactic Correlation Process 
Following the semantic correlation process, the syntactic correlation 

algorithm attempts to find an FEV corresponding to the selected CCR using the trained 

neural network associated with each FEV.  The user will initiate the syntactic correlation 

process by setting the syntactic correlation threshold to the value desired and then 

selecting the FEVs returned by the previous keyword match process to be considered by 

the syntactic matching routine.  The user can adjust the syntactic correlation threshold 

value to selectively set the level for displaying potential matches.  Once the threshold 

value is set and the user selects “Filter Using Neural Net”, the OOMI IDE will retrieve 

the CCR Syntax Vector subcomponent for the CCR selected by the user.   
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For each FEV selected for review, the OOMI IDE will use the 

discriminator vectors contained in the CCR Syntax Vector subcomponent as input to the 

neural network previously saved in the FEV’s FCR Syntax Net subcomponent.  The 



neural network will score each FCR Schema attribute and operation based on its 

similarity to the CCR Schema attribute or operation represented by the input 

discriminator vector.  The result is provided as a vector containing a score for each FCR 

Schema attribute and operation reflecting the similarity between it and the input CCR 

Schema attribute or operation.  Scores for each attribute and operation will be in the 

range [0.0, 1.0] with a score of 1.0 signifying an exact correspondence between the CCR 

and FCR discriminator vector values.  For example, Figure VI-4 shows the discriminator 

vectors for MechanizedCombatVehicle CCR attributes mcvType, mcvLocation, mcvTime, 

and mcvRadius.  When the neural network for the GroundCombatVehicle_View1 FCR is 

input with the discriminator vector for MechanizedCombatVehicle CCR Schema attribute 

mcvType as seen in Figure VI-5, then the resultant output vector 

<0.980, 0.0001, 0.016, 0.014> indicates the similarity of CCR Schema attribute mcvType 

to the FCR Schema attributes type, position, time, and range.  In this example, CCR 

Schema attribute mcvType appears most closely matched with FCR Schema attribute 

type. 

 

 
Figure VI-4. Discriminator Vectors for Example MechanizedCombatVehicle CCR 

(After [She02]) 
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Figure VI-5. Using Trained Neural Network to Evaluate Attribute and Operation 
Correspondence (After [LC00]) 

 
The process is repeated, comparing each CCR Schema attribute and 

operation with every FCR Schema attribute and operation, resulting in a CCR-FCR 

Comparison Matrix containing scores of the comparison.  Figure VI-6 illustrates the 

CCR-FCR Comparison Matrix comparing the MechanizedCombatVehicle CCR to the 

GroundCombatVehicle_View1 FCR. 

 

type position time
mcvType

mcvTime
CCR Schema

Attributes

FCR Schema
Attributes

mcvLocation

mcvRadius

range
.980 .0001 .016 .014

.0007 .980 .020 .096

.003 .972 .027 .013

.012 .014 .0003 .985
 

Figure VI-6. Example CCR-FCR Comparison Matrix 
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This process is repeated for the remaining FEVs selected for comparison 

with the CCR.  In order to facilitate comparison among FEVs as to which might offer the 

closest match to the CCR being registered, a single value is computed for the CCR-FCR 

Comparison Matrix.  Determining the maximum value from each row of the CCR-FCR 

Comparison Matrix and then computing the 2-norm of the resultant maximums provides 

this single value.  The ratio of this result to the 2-norm of the row maximums for a 

perfect CCR-FCR match is then saved for comparison with other FCRs.  The 2-norm or 

length of a vector is computed by taking the square root of the sum of the squares of each 

element in the vector [Ant94]. 

By using the row maximum, the FCR with the highest score (i.e. closest 

match) for a CCR attribute or operation parameter, will contribute a higher value toward 

the overall FCR score, regardless of which FCR attribute or operation parameter provided 

the closer match.  The 2-norm preserves the relative score between two FCR’s regardless 

of which attribute or operation parameters contributed to the score, i.e., an equal score is 

provided to two FCRs whose maximum attribute or operation parameter scores are equal.  

In addition, the 2-norm provides a higher score to an FCR which provides a perfect or 

near-perfect match for one or more CCR attributes or operation parameters than to an 

FCR which doesn’t provide a close match with any of the CCR attributes or operation 

parameters, even though the sum of the maximum attribute or operation parameter scores 

may be equal.  Figure VI-7 illustrates computation of the score for the CCR-FCR 

Comparison Matrix using the process outlined above. 

 

type position time range
Row Maximum

(X) (X)2

mcvType 0.980 0.0001 0.016 0.014 0.980 0.961
mcvLocation 0.0007 0.980 0.020 0.096 0.980 0.960
mcvTime 0.003 0.972 0.027 0.013 0.972 0.945
mcvRadius 0.012 0.014 0.0003 0.985 0.985 0.971

√∑(X2) 1.959

FCR Schema
Attributes

CCR Schema
Attributes

(as percent of maximum 2-norm) 97.93  

Figure VI-7. Computing Single Value for CCR-FCR Comparison Matrix 
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After all FEVs have been examined, the FEVs will be ordered according 

to CCR-FCR Comparison Matrix score, and the ordered list of FEVs whose score 

exceeds the threshold value will be output to the IDE Correlation Window.  In addition, 

the average of the semantic and syntactic scores is displayed in the Correlation Window 

to further indicate similarity of the CCR being registered and the FCRs chosen for 

review. 

Results from the syntactic and semantic correlation methods are used as an 

aid to the interoperability engineer for determining when component and federation 

representations refer to the same real-world entity.  Final determination of whether 

component and federation representations correspond is the responsibility of the 

interoperability engineer.  

C.  SUMMARY 
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The correlation methodology implemented for the OOMI IDE is used to assist the 

interoperability engineer in adding a Component Class Representation (CCR) to a 

Federation Interoperability Object Model (FIOM) during the Register CCR phase of IDE 

operation.  Assistance is provided to the interoperability engineer in terms of computer 

aid for finding the Federation Entity (FE) corresponding to the same real-world entity 

modeled by the CCR.  The OOMI IDE correlation methodology uses a two-phased 

approach for establishing this correspondence.  In the first phase, semantic information 

taken from keywords used to describe component and federation models of a real-world 

entity is used to establish the correspondence.  In the second phase, details about the 

structure and composition of the attributes and operations used to model the real-world 

entity are used to correlate component and federation models.  Potential correspondences 

between a CCR and an FCR are provided in terms of a score for both the semantic and 

syntactic phases of the correlation effort, or a combination of the two.  Comparison of 

scores among potential FCR matches will direct the interoperability engineer toward the 

most likely match for a CCR.  However, final determination of CCR-FCR 

correspondence requires a one-to-one correspondence between the attribute and operation 

sets of a potential CCR-FCR match as discussed in Section V.C.3.b.  Determination of 

attribute and operation correspondence and operation behavioral equivalence is the 

responsibility of the interoperability engineer and is not automated in the OOMI IDE. 



Implementation of the correlation methodology detailed in this chapter was 

initiated by Pugh [Pug01] and continued under Shedd [She02].  While implementation of 

the correlation methodology has not been completed, thereby precluding an assessment of 

the method’s effectiveness, criteria for conducting such an assessment can be provided.  

The primary criteria to be used for such an assessment are a determination of the 

precision and recall attained by the search for the federation model of a real-world entity 

corresponding to a component model being registered. In Section III.A precision is 

defined as the ratio of the number of objects correctly correlated and the total number of 

objects correlated, and recall is defined as the ratio between the number of objects 

correctly correlated and the number of correct correlations possible.  As applied to the 

real-world entity model correlation problem, a calculation of precision will provide the 

ratio of the number of FCR’s returned by the correlation methodology that are correct 

matches for the CCR being registered to the total number of FCR’s returned as candidate 

matches.  Recall will provide a ratio of the number of FCR’s returned by the correlation 

methodology as correct matches for the CCR being registered to the number of FCR’s 

that are correct matches for the CCR being registered.  As discussed in Sections VI.B.2.a 

and VI.B.2.b the interoperability engineer can set a threshold for display of candidate 

matches returned by either the semantic or syntactic correlation methodologies or by a 

combination of the two methods.  Values for precision and recall should be provided with 

a range of threshold values used for returning candidate matches for each of these 

possible alternatives. 
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VII. OBJECT-ORIENTED METHOD FOR INTEROPERABILITY 
(OOMI) TRANSLATOR  

 
 
 

A. TRANSLATOR OVERVIEW 
Interoperability was previously defined as the ability to exchange information and 

tasks between systems [LISI98, Pit97].  As mentioned in Section II.A.1, differences in 

perspective, modeling constructs used, and application design specifications result in 

heterogeneous modeling of the information and tasks to be shared among systems.  

Resolution of these heterogeneities is required in order to enable system interoperation. 

The purpose of the translator presented in this chapter is to resolve heterogeneities 

among systems in order to enable their interoperation.  As discussed in Section IV.C.1.a, 

these heterogeneities can be categorized as either differences in view, indicating that two 

systems have a different perspective on the characteristics required to model a real-world 

entity, or differences in representation when systems differ on how those characteristics 

are modeled.  Under the Object-Oriented Method for Interoperability (OOMI), an 

interoperability engineer captures differences in view and representation of the real-world 

entities involved in the interoperation among systems in a Federation Interoperability 

Object Model (FIOM).  An FIOM is created for a specified federation of systems prior to 

runtime using a specialized toolset, the OOMI Integrated Development Environment 

(IDE) previously described in Chapter V. 

The real-world entities involved in the interoperation among systems are modeled 

as Federation Entities (FEs) in the OOMI.  Differences among federation components on 

what should be included in the model of these real-world entities are captured in the form 

of one or more views for each FE, termed Federation Entity Views (FEVs) in the OOMI.  

Differences in representation of the attributes and operations that comprise a view among 

federation components are captured as various Component Class Representations (CCRs) 

of the FEV.  Each FEV also includes a standard representation of the view that is termed 

a Federation Class Representation (FCR).  FEVs are related in terms of their common 

attributes and operations by means of an FCR Schema Inheritance Hierarchy that is 

defined for each FE. 
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The OOMI translator uses information contained in the FIOM created prior to 

runtime for resolving heterogeneities among federation systems at runtime.  The 

translator uses the FCR Schema Inheritance Hierarchy to resolve differences in view 

among systems, as caused by heterogeneities of scope, level of abstraction, and temporal 

validity.  The translator uses an FCR-CCR Translation class associated with each 

component representation of a view (CCR) to resolve heterogeneities of hardware and 

operating systems, organizational models, structure, presentation, and meaning.  Figure 

VII-1 illustrates the interaction between the translator and FIOM for a wrapper-based 

implementation of the translator on both source and destination systems. 
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Model
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Source
System

Destination
System

Federation Interoperability Object Model

Source Model Translator Destination Model Translator

groundWeaponSystem
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Figure VII-1. Source and Destination System Translator Implementation 

 
B. TRANSLATOR ARCHITECTURAL ALTERNATIVES 

Translator implementation can be adapted to accommodate a number of 

federation architecture alternatives.  In one implementation, the translator can be 

employed as part of a software wrapper that logically envelops a component system.  The 

wrapper would function to intercept incoming and outgoing information from the 

wrapped system and convert it from one model to another.  In another implementation the 
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translator could be realized as part of middleware that resides on a separate platform 

between the source and destination systems.  Translator placement determination is not a 

topic of this dissertation; however, this section provides substantiation of translator 

architectural compatibility. 

In a wrapper-based implementation, translator functionality could be included in a 

wrapper around either the source or destination systems, or around both source and 

destination systems.  Implementing the translator functionality as a wrapper around only 

the source system would require the wrapper to convert the outgoing information from 

the source model to the destination model prior to forwarding to the destination system.  

A wrapper would not be required for the destination system as information received at 

that system would already be provided in the destination model.   

A source-system-only wrapper is implemented by incorporating both the source 

and destination model translators in the source system wrapper as depicted in Figure 

VII-2.  In this illustration the source model translator intercepts outgoing messages from  
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Figure VII-2. Source-System-Only Translator Implementation 
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the source system and converts them from the source system model to an intermediate 

model.  This output is then forwarded to the destination model translator, also contained 

in a wrapper surrounding the source system, where it is converted from the intermediate 

model to the destination system model prior to forwarding to the destination system.  A 

source-system-only implementation could be accomplished without the use of an 

intermediate model, converting directly from the source to destination model; however, 

for a federation of n systems the number of required translations would increase from the 

2n required with the use of an intermediate model to n(n-1) required without. 

Similarly, implementing the translator functionality as a wrapper around only the 

destination system would require the destination wrapper to convert incoming 

information from the source to the destination model, possibly involving translation to an 

intermediate model in the process. In this implementation, a wrapper would not be 

required for the source system as the destination wrapper performs all data transfor-

mation.  Figure VII-3 illustrates a destination-system-only wrapper implementation. 
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Figure VII-3. Destination-System-Only Translator Implementation 
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An additional architectural alternative would be to provide source model 

translation functionality in a wrapper surrounding the source system and destination 

model translation functionality in a wrapper surrounding the destination system.  The 

source wrapper translation functionality would convert outgoing information from the 

source model to an intermediate model for transmission to the destination system.  The 

destination wrapper translation functionality would convert the incoming information 

from the intermediate model used for transmission to the model expected by the wrapped 

system.  This architecture alternative is shown in Figure VII-1. 

Another alternative for translator implementation is to provide both the source 

and destination model translation functionality as part of middleware that resides on a 

separate hardware platform between the source and destination systems in a hub-and-

spoke architecture implementation.  All information exchanged among federation 

systems would be routed from the source system to the hub where resident middleware 

would convert the information from the source to the destination model prior to forward-

ing it to the appropriate destination.  Figure VII-4 depicts this architectural alternative. 
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Figure VII-4. Middleware Translator Implementation 



C. TRANSLATOR FUNCTION 
The translator uses the FIOM created prior to runtime to dynamically resolve 

differences in information shared among systems.  As discussed in Section IV.C.1.a, 

modeling differences for shared information consist of either differences in view or 

differences in representation of a view for the real-world entity modeled.  Differences in 

view are resolved through exploitation of the information contained in the FCR Schema 

Inheritance Hierarchy for the federation model of the real-world entity using Liskov and 

Wing’s notion of behavioral subtyping [LW94].  Differences in view representation are 

resolved by use of the translations included with the FCR-CCR Translation class 

associated with each component system model of the real-world entity.  As indicated in 

Section IV.C.1.b(2), use of an intermediate representation for a real-world entity reduces 

the number of translations required for a system with n representations of that entity from 

n(n-1) to 2n.  Therefore, the OOMI translator uses a two-step process, involving the use 

of an intermediate representation, to reduce the number of required translations.  In the 

first step the source model of a real-world entity is translated to an equivalent 

intermediate model of that entity.  In the second step, this intermediate model is 

translated to a behaviorally equivalent model suitable for use by the destination system. 

In order to illustrate the translator functionality described in this chapter, a 

continuing example is used to demonstrate translator action when exporting an instance 

of a real-world entity from one system to another.  For the example we use the ground 

combat vehicle real-world entity introduced in Figure IV-2 and the different models used 

to portray that entity on a hypothetical federation of systems.  We describe how an 

instance of the real-world entity exported from one system is transformed for use by an 

application on another system in the federation that presents a different model of the real-

world entity than that provided by the source system.  For our example System B will be 

the source and System D the destination. 

1. Source To Intermediate Model Translation 
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A source model of a real-world entity is captured in the form of a CCR in the 

FIOM.  As discussed in Section IV.C.1.b(2), when defining a Federation Entity to depict 

the information and operations shared between systems in a federation, for each 

component representation of a real-world entity (CCR) there will be one, and only one, 



FCR defined for that real-world entity.  In addition, the FCR will be defined such that 

there is a one-to-one correspondence between the CCR and FCR Schema attribute and 

operation sets.  Thus a CCR and its corresponding FCR share the same view of a real-

world entity.  Therefore, translation from source to intermediate model of a real-world 

entity requires only resolution of any differences in representation between the models. 

The OOMI defines an object model of the real-world entities involved in the 

interoperation among systems, the FIOM.  The FIOM is constructed for a system 

federation by extracting information contained in the component systems’ external 

interfaces.  As indicated in Section V.D.2.a(2), specification of a component system’s 

external interface is provided in terms of an XML Schema description for each of the 

real-world entities whose information or operations are shared by the system.  The OOMI 

IDE uses these XML Schemas in constructing the FIOM for a system federation.  The 

export and import of information required to accomplish information exchange and joint 

task execution is achieved through the use of XML instance documents conforming to 

these schemas.  Communications among systems required to accomplish information 

exchange and joint task execution are then achieved through the export and import of 

messages in the form of XML instance documents conforming to these schemas. 

Source to intermediate model translation first involves conversion of the informa-

tion exported by a source system from the source model format to an object represen-

tation of that information for use by the OOMI translator.  This step involves converting 

the information from the XML instance document representation of the exported message 

to a corresponding object representation of that message.  The next step involves 

conversion from the source object representation to the corresponding intermediate object 

representation.  The final optional step entails converting the intermediate object 

representation to an intermediate XML instance document representation if the federation 

architecture uses XML for transferring information among systems. 

a. Converting From XML to Object Representation of Exported 
Information 

Converting an exported message from an XML instance document 

representation to a corresponding object representation is done using XML data binding 

[BOD01].  For each message type exported from or imported to a component system, an 
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XML Schema is used to define the allowable message contents.  The OOMI IDE 

generates equivalent class representations of these XML Schemas using data binding, 

which it stores in the FIOM as CCR Schemas.  As part of a generated class, the data 

binding process automatically creates an unmarshal method used to convert an XML 

instance document, conforming to the XML Schema used to generate the class, to an 

instance of the generated class.  Figure VII-5 illustrates the process for converting a 

source XML instance document to its equivalent CCR Schema object and the relationship 

between the XML instance document’s governing XML Schema and the CCR Schema 

object’s defining CCR Schema. 
 

<<becomes>>

(unmarshal)
CCR Schema Object

CCR Schema
<<becomes>>

(XML data binding)

<<conforms to>> <<instance of>>

Source XML Schema

Source XML Document

  
Figure VII-5. Process for Converting Source XML Instance Document to its Equivalent 

CCR Schema Object 
 

In order to convert an exported XML instance document to its equivalent 

object representation, the translator must first determine which unmarshal method to use 

for the conversion.  The correct unmarshal method to use is the one contained in the CCR 

Schema generated from the XML Schema to which the exported XML instance document 

conforms.  Location of the CCR Schema that corresponds to the exported source XML 

instance document can be accomplished using one of three methods: 1) use of a standard 

convention for naming XML instance documents, XML Schemas, and generated CCR 

Schemas; 2)  examination of the SchemaLocation attribute of the instance document root 

element to determine the XML Schema to which the instance document conforms, using 

a naming convention for determining the CCR Schema given the XML Schema; or 3) use 

of a common, unique XML namespace Uniform Resource Identifier (URI) for both the 
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XML Schema and instance document and saving that namespace URI with the CCR that 

contains the generated CCR Schema for future reference. 

The third method above is the one chosen for use in the initial prototype 

OOMI IDE and translator.  By saving the XML namespace URI of the XML Schema 

used to generate a CCR Schema with its containing CCR, the xmlns attribute of a 

received XML instance document can be used to locate the appropriate CCR Schema.  

For example, Figure VII-6 depicts an XML document for an instance of the System B 

MechanizedCombatVehicle shown in Figure IV-3.  As seen in the figure, the namespace 

URI (targetNamespace) for the XML instance document is "http://nps.navy.mil/cs/oomi/-

systemB/mechanizedCombatVehicle."  Similarly, for the governing XML Schema (specified in 

the instance document’s xsi:schemaLocation attribute) the namespace URI is also 

"http://nps.navy.mil/cs/oomi/systemB/mechanizedCombatVehicle" as shown in Figure VII-7.  By 

including this namespace URI with the CCR Schema generated from the Figure VII-7 

XML Schema excerpt, the appropriate unmarshal method can be found for converting the 

Figure VII-6 XML instance document to its equivalent object representation. 
 

<?xml version="1.0" encoding="UTF-8"?> 
< ="http://nps.navy.mil/cs/oomi/systemB/mechanizedCombatVehicle"

="http://www.w3.org/2001/XMLSchema-instance"
="http://nps.navy.mil/cs/oomi/systemB 

C:\Translator\OOMI\projects\testapps\mechanizedCombatVehicle.xsd"> 
 < >tank</ > 
 < > 
  < > 
   < >1</ > 
   < >A</ > 
  </ > 
  < >B222</ > 
  < >A111</ > 
 </ > 
 < > 
  < >16</ > 
  < >14</ > 
  < >41</ > 
  < >U</ > 
 </ > 
 < >1200</ > 
</ >  

mechanizedCombatVehicle

mcvType mcvType
mcvLocation

utmZone
eastWest eastWest
northSouth northSouth

utmZone
mgrsEasting mgrsEasting
mgrsNorthing mgrsNorthing

mcvLocation
mcvTime

day day
hourTime hourTime
minuteTime minuteTime
localTimeZone localTimeZone

mcvTime
mcvRadius mcvRadius

mechanizedCombatVehicle

 xmlns  
xmlns:xsi  
xsi:schemaLocation

Figure VII-6. Source XML Document “mechanizedCombatVehicle.xml” 
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<?xml version="1.0" encoding="UTF-8"?> 
< ="http://nps.navy.mil/cs/oomi/systemB/mechanizedCombatVehicle"

="http://www.w3.org/2001/XMLSchema" ="http://nps.navy.mil/cs/oomi/systemB"
="qualified" ="unqualified"> 

 < ="mechanizedCombatVehicle"> 
  < > 
   < > 
    < >A mechanizedCombatVehicle msgtype provides System B model of ground 
     combat vehicle real-world entity for the example in Figure III-3.</ > 
   </ > 
   < > 
    < ="systemB:mcvType"/> 
    < ="systemB:mcvLocation"/> 
    < ="systemB:mcvTime"/> 
    < ="mcvRadius" ="systemB:distanceInKmType" ="0"/> 
   </ > 
  </ > 
 </ > 
 < ="mcvType"> 
  < > 
   < /> 
  </ > 
  < > 
   < ="xsd:string"> 
    < ="4"/> 
    < ="16"/> 
    < ="tank"/> 
    < ="personnelCarrier"/> 
    < ="reconVehicle"/> 
    < ="unknown"/> 
   </ > 
  </ > 
 </ > 
 < ="mcvLocation"> 
  < > 
   < > 
    < /> 
   </ > 
   < > 
    < ="utmZone" ="systemB:utmZoneType"/> 
    < ="mgrsEasting" ="systemB:mgrsEastingType"/> 
    < ="mgrsNorthing" ="systemB:mgrsNorthingType"/> 
   </ > 
  </ > 
 </ > 
 < ="mcvTime"> 
  < > 
   < > 
    < >The day of a month and timekeeping in hours and minutes of a calendar day, 
     using the 24-hour clock system and an associated time zone.</ > 
   </ > 
   < > 
    < ="day" ="systemB:dayType"/> 
    < ="hourTime" ="systemB:hourTimeType"/> 
    < ="minuteTime" ="systemB:minuteTimeType"/> 
    < ="localTimeZone" ="systemB:localTimeZoneType"/> 
   </ > 
  </ > 
 </ > 
 < ="distanceInKmType"> 
  < ="xsd:integer"> 
   < ="0"/> 
   < ="1200"/> 
  </ > 
 </ > 

 . 
 . 
 . 
</ > 
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Figure VII-7. Source XML Schema “mechanizedCombatVehicle.xsd” Excerpt 
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Upon receipt of an XML instance document from the source system, the 

translator determines the corresponding CCR Schema and invokes its unmarshal method 

to convert the document to an equivalent object representation.  The resulting CCR 

Schema object is provided as input to the next translator step. 

To illustrate this process, System B exports an XML instance document 

describing an instance of its model of the GroundCombatVehicle real-world entity.  The 

exported “mechanizedCombatVehicle.xml” XML instance document is captured by the 

source model translator and first converted to an equivalent object representation of the 

exported information.  Figure VII-8 shows a UML representation of the object generated 

from the exported XML instance document depicted in Figure VII-6.  In addition, the 

XML instance document’s governing XML Schema (shown in Figure VII-7) and the 

resultant object’s defining CCR Schema are included to complete the illustration. 

b. Translation From Source Object Representation to Intermediate 
Object Representation 

Following conversion of the exported information to an object 

representation, the information must be translated from the source model object 

representation, a CCR Schema instance, to an intermediate object representation, an FCR 

Schema instance.  As described in Section IV.C.1.b(2), each CCR has exactly one FCR to 

which it corresponds.  Likewise, each CCR Schema corresponds to exactly one FCR 

Schema.  This FCR Schema is created during FIOM construction as described in Section 

V.D.2.a(1).  From Figure IV-3, it is seen that the System B MechanizedCombatVehicle 

model of our ground combat vehicle real-world entity corresponds to view 1 of the real-

world entity.  Thus, the MechanizedCombatVehicle CCR Schema instance will be 

converted to its corresponding GroundCombatVehicle_View1 FCR Schema instance. 

This translation is accomplished through the use of an FCR-CCR 

Translation class defined by the interoperability engineer during FIOM construction.  For 

each component system representation of an FEV, the interoperability engineer defines 

an FCR-CCR Translation class containing translate methods used to convert between 

component and federation representations of the FEV, as described in 

Section IV.C.1.b(3).  These methods are used to translate the object representation of a 

received XML instance document from a CCR Schema instance to an FCR Schema 
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instance.  Figure VII-9 illustrates the process for translating a CCR Schema instance to an 

equivalent FCR Schema instance using the translate method from the FCR-CCR 

Translation class associated with the CCR Schema. 

 

mechanizedCombatVehicle_CCR_Schema:
MechanizedCombatVehicle_CCR_Schema

mcvType = tank
mcvLocation = 1A A111 B222
mcvTime = 161441U
mcvRadius = 1200

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType()
setMcvLocation()
setMcvTime()
setMcvRadius()
marshal()
unmarshal()

<<becomes>>

(unmarshal)

MechanizedCombatVehicle_CCR_Schema

mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius : DistanceInKmType

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType()
setMcvLocation()
setMcvTime()
setMcvRadius()
marshal()
unmarshal()

<<CCR Schema Object>>

<<CCR Schema>>

<<becomes>>

(Castor Source Generation)

<<conforms to>>

<<instance of>>

<< Source XML Document>>

<?xml version="1.0" encoding="UTF -8"?> 
< ="http://nps.navy.mil/cs/oomi/systemB

="http://www.w3.org/2001/XMLSchema -instance"
="http://nps.navy.mil/cs/oomi/systemB  

C:\Translator\OOMI\projects\testapps\mechanizedCombatVehicle.xsd "> 
 < >tank</ > 
 < > 
  < > 
   < >1</ > 
   < >A</ > 
  </ > 
  < >B222</ > 
  < >A111</ > 
 </ > 
 < > 
  < >16</ > 
  < >14</ > 
  < >41</ > 
  < >U</ > 
 </ > 
 < >1200</ > 
</ > 

<< Source XML Schema>>
<?xml version="1.0" encoding="UTF -8"?> 
< ="http://nps.navy.mil/cs/oomi/systemB

="http://www.w3.org/2001/XMLSchema ="http://nps.navy.mil/cs/oomi/systemB
="qualified " ="unqualified "> 

 < ="mechanizedCombatVehicle "> 
  < > 
   < > 
    < >A mechanizedCombatVehicle msgtype provides System B model of ground  
     combat vehicle real -world entity for the example in Figure II I-3.</ > 
   </ > 
   < > 
    < ="systemB:mcvType "/> 
    < ="systemB:mcvLocation "/> 
    < ="systemB:mcvTime "/> 
    < ="mcvRadius ="systemB:distanceInKmType ="0"/> 
   </ > 
  </ > 
 </ > 
 < ="mcvType"> 
  < > 
   < /> 
  </ > 
  < > 
   < ="xsd:string"> 
    < ="4"/> 
    < ="16"/> 
    < ="tank"/> 
    < ="personnelCarrier "/> 
    < ="reconVehicle "/> 
    < ="unknown"/> 
   </ > 
  </ > 
 </ > 
 < ="mcvLocation "> 
  < > 
   < > 
    < /> 
   </ > 
   < > 
    < ="utmZone" ="systemB:utmZoneType "/> 
    < ="mgrsEasting ="systemB:mgrsEas tingType"/> 
    < ="mgrsNorthing ="systemB:mgrsNorthingType "/> 
   </ > 
  </ > 
 </ > 
 < ="mcvTime"> 
  < > 
   < > 
    < >The day of a month and t imekeeping in hours and minutes of a calendar day,
     using the 24 -hour clock system and an associated time zone. </ > 
   </ > 
   < > 
    < ="day" ="systemB:dayType "/> 
    < ="hourTime ="systemB:hourTimeType "/> 
    < ="minuteTime ="systemB:minuteTimeType "/> 
    < ="localTimeZone ="systemB:localTimeZoneType "/> 
   </ > 
  </ > 
 </ > 
 < ="distanceInKmType "> 
  < ="xsd:integer "> 
   < ="0"/> 
   < ="1200"/> 
  </ > 
 </ > 

 . 
 . 
 . 
</ > 
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Figure VII-8. Converting From XML to Object Representation of Exported Information 
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<<becomes>>

(translate)
CCR Schema Object

FCR-CCR Translation Class

FCR Schema Object

 
Figure VII-9. CCR Schema Object to FCR Schema Object Translation 

 
For example, as previously mentioned, the MechanizedCombatVehicle 

class used to model our ground combat vehicle real-world entity on System B 

corresponds to view 1 of the real-world entity.  Therefore, the GroundCombat-

Vehicle_View1__MechanizedCombatVehicle Translation class would be used to convert 

from the source CCR Schema instance representation of our real-world entity to an 

equivalent intermediate FCR Schema instance representation.  Figure VII-10 depicts how 

the translate(mechanizedCombatVehicle : MechanizedCombatVehicle) : GroundCombatVehicle_View1 

method from this class would be invoked to effect this translation.  Then, depending on 

translator architectural implementation, this intermediate object representation could 

either be forwarded directly to the Intermediate-to-Destination-Model-translation or, 

optionally, converted into an XML Document representation of the intermediate object. 

c. Converting From Intermediate Object Representation of 
Exported Information to XML Instance Document 
Representation 

If the architecture used for translator implementation necessitates the use 

of an XML instance document for transporting information between source and 

destination systems, then it may be necessary to convert from the intermediate object 

representation of the exported information to an equivalent XML document 

representation.  Such may be the case if the translator is implemented as a wrapper 

around both source and destination systems and an XML instance document is used for 

transporting information between systems as depicted in Figure VII-1. 
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groundCombatVehicle_View1_FCR_Schema:
GroundCombatVehicle_View1_FCR_Schema
type = tank
position = 392451N 0814413W
time = 162241Z
range = 720

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema Object>>

<<becomes>>

(translation)

GroundCombatVehicle_View1__MechanizedCombatVehicle

translate(mechanizedCombatVehicle: MechanizedCombatVehicle) : GroundCombatVehicle_View1

mechanizedCombatVehicle_CCR_Schema:
MechanizedCombatVehicle_CCR_Schema

mcvType = tank
mcvLocation = 1A A111 B222
mcvTime = 161441U
mcvRadius = 1200

getMcvType()
getMcvLocation()
getMcvTime()
getMcvRadius()
setMcvType()
setMcvLocation()
setMcvTime()
setMcvRadius()
marshal()
unmarshal()

<<CCR Schema Object>>

<<FCR-CCR Translation>>

 
Figure VII-10. Converting from Source to Intermediate Object Representations 

 
Conversion from an intermediate object representation to an XML 

instance document representation of the exported information is accomplished by use of 

the marshal method generated with the FCR Schema defining the intermediate object 

representation.  XML data binding creates the marshal method for a class generated from 

an XML Schema to convert an instance of the class to its equivalent XML representation.  

If an intermediate XML document representation of the exported information were 

required, then the translator would use the intermediate FCR Schema object’s marshal 

method to convert the object representation to its equivalent XML instance document 

representation.  Figure VII-11 illustrates the process for converting an FCR Schema 

object to its equivalent intermediate XML instance document representation and the 

relationship between the FCR Schema object’s defining FCR Schema and the XML 

instance document’s governing XML Schema. 
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<<becomes>>

(marshal)
FCR Schema Object

FCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Intermediate XML Schema

Intermediate XML Document

 
Figure VII-11. Process for Converting FCR Schema Object to its Equivalent XML 

Instance Document 

 
As shown in Figure VII-12, the translator uses the marshal method defined 

for the GroundCombatVehicle_View1 FCR Schema from our continuing example to 

convert the groundCombatVehicle_View1 intermediate object representation of the 

exported information to its equivalent “groundCombatVehicle_View1.xml” XML 

instance document representation, detailed in Figure VII-13. 

2. Intermediate To Destination Model Translation 
Translation from an intermediate to a destination model of a real-world entity 

defining an interoperation requires resolution of potential differences in view as well as 

possible differences in representation between intermediate and destination models.  

Unless the source and destination systems have the same view of the real-world entity 

being modeled, the intermediate model created from the source model will have a 

different view of the modeled real-world entity than the destination model.  Intermediate 

to destination model translation therefore first requires creation of an intermediate model 

with the same view as the destination model and then resolution of differences in 

representation between this new intermediate model and the destination model. 

As discussed in Section IV.C.1.b(3), differences in view between intermediate 

and destination models of a real-world entity are resolved through use of the FCR 

Schema Inheritance Hierarchy defined for each FE in the FIOM.  Differences in view 

representation between intermediate and destination models are resolved using the FCR-

CCR Translation class associated with the destination system CCR. 
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<<becomes>>

(marshal)

<<becomes>>

(Source Generation)

<<instance of>>

<<instance of>>

groundCombatVehicle_View1_FCR_Schema:
GroundCombatVehicle_View1_FCR_Schema
type = tank
position = 392451N 0814413W
time = 162241Z
range = 720

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema Object>>

GroundCombatVehicle_View1_FCR_Schema

type : VehicleType
position : Position
time : Time
range : DistanceInNmType

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema>>

<< Intermediate XML Document>>
<?xml version="1.0" encoding="UTF -8"?> 
< ="http://nps.navy.mil/cs/oomi/fiomA

="http://www.w3.org/2001/XMLSchema -instance
="http://nps.navy.mil/cs/oomi/fiomA  

 F:\PHD~1.MAT\Dissertation\Chapter7\CHAPTE~2\groundCombatVehicleView1.xsd "> 
 < >battleTank</ > 
 < > 
  < > 
   < >392451</ > 
   < >N</ > 
  </ > 
  < > 
   < >0814413</ > 
   < >W</ > 
  </ > 
 </ > 
 < > 
  < >16</ > 
  < >22</ > 
  < >41</ > 
  < >Z</ > 
 </ > 
 < >720</ > 
</ > 

<< Intermediate XML Schema>>
<?xml version="1.0" encoding="UTF -8"?> 
< ="http://nps.navy.mil/cs/oomi/fiomA

="http://www.w3.org/2001/XMLSchema " ="http://nps.navy.mil/cs/oomi/fiomA
="qualified ="unqualified"> 

 < ="groundCombatVehicleView1 "> 
  < > 
   < > 
    < >This sample schema provided for example in Figure III -3.   
    groundCombatVehicleView1 provides same perspective of ground combat vehicle  
    real-world entity as System B mechanizedCombatVehicle model. </ > 
   </ > 
   < > 
    < ="type" ="fiomA:vehicleType ="0"/> 
    < ="fiomA:position ="0"/> 
    < ="fiomA:time ="0"/> 
    < ="range ="fiomA:distanceInNmType ="0"/> 
   </ > 
  </ > 
 </ > 
 < ="vehicleType"> 
  < ="xsd:string"> 
   < ="5"/> 
   < ="16"/> 
   < ="battleTank "/> 
   < ="rocketLauncher"/> 
   < ="truck"/> 
   < ="personnelCarrier "/> 
   < ="reconVehicle"/> 
   < ="unknown"/> 
  </ > 
 </ > 
 < ="position"> 
  < > 
   < > 
    < /> 
   </ > 
   < > 
    < ="latitude" ="fiomA:latitudeType "/> 
    < ="longitude ="fiomA:longitudeType "/> 
   </ > 
  </ > 
 </ > 
 < ="time"> 
  < > 
   < > 
    < >The day of a month  and timekeeping in hours and minutes of a calendar day, 
using the 24-hour clock system and an associated time zone. </ > 
   </ > 
   < > 
    < ="stdDay ="fiomA:stdDayType "/> 
    < ="stdHourTime ="fiomA:stdHourTimeType "/> 
    < ="stdMinuteTime ="fiomA:stdMinuteTimeType "/> 
    < ="stdTimeZone" ="fiomA:stdTimeZoneType "/> 
   </ > 
  </ > 
 </ > 
 < ="distanceInNmType"> 
  < ="xsd:integer "> 
   < ="0"/> 
   < ="1000"/> 
  </ > 
 </ > 

   . 
   . 
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Figure VII-12. Conversion from Intermediate Object Representation to XML Document 
Representation  

 
Converting from an intermediate to a destination model of a real-world entity 

involves four steps.  First, if the translator receives the intermediate model in the form of 

an XML instance document, then it converts this document to its equivalent object 

representation.  Second, the translator must resolve differences in view between the 

intermediate and destination models.  Third, the translator must resolve differences in 

view representation between intermediate and destination models.  Fourth, the destination 
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model must be converted from an object representation to an equivalent XML instance 

document representation for forwarding to the destination system application. 

 
<?xml version="1.0" encoding="UTF-8"?> 
<

="http://nps.navy.mil/cs/oomi/fiomA/groundCombatVehicle_View1"
="http://www.w3.org/2001/XMLSchema-instance"

="http://nps.navy.mil/cs/oomi/fiomA 
 F:\PHD~1.MAT\Dissertation\Chapter7\CHAPTE~2\groundCombatVehicle_View1.xsd"> 
 < >battleTank</ > 
 < > 
  < > 
   < >392451</ > 
   < >N</ > 
  </ > 
  < > 
   < >0814413</ > 
   < >W</ > 
  </ > 
 </ > 
 < > 
  < >16</ > 
  < >22</ > 
  < >41</ > 
  < >Z</ > 
 </ > 
 < >720</ > 
</ > 
  

groundCombatVehicle_View1

type type
position

latitude
latDegMinSec latDegMinSec
nsHemisphere nsHemisphere

latitude
longitude

longDegMinSec longDegMinSec
ewHemisphere ewHemisphere

longitude
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time
stdDay stdDay
stdHourTime stdHourTime
stdMinuteTime stdMinuteTime
stdTimeZone stdTimeZone

time
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groundCombatVehicle_View1

 
xmlns  
xmlns:xsi   
xsi:schemaLocation

Figure VII-13. Intermediate XML Instance Document 
“groundCombatVehicle_View1.xml” 

 
a. Converting From XML Document Representation back to 

Intermediate Object Representation 
Converting a received XML instance document representation back to its 

corresponding intermediate object representation reverses the process executed in 

Section VII.C.1.c.  This would be necessary for a translator architecture where an XML 

instance document is used to transport information between a source and destination 

system.  As seen in Figure VII-12, the received intermediate XML document is an 

instance of the XML Schema used to generate the FCR Schema defining the standard 

representation of the Federation Entity View.  Converting the received XML instance 

document back to its equivalent object representation is done using an unmarshal method 

contained in the FCR Schema.  The unmarshal method functions as the inverse of the 

marshal method previously discussed in Section VII.C.1.c.  Both marshal and unmarshal 

methods are generated from an XML Schema during data binding.  Figure VII-14 
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illustrates the process for converting the received intermediate XML instance document 

to its equivalent intermediate FCR Schema object and the relationship between the XML 

instance document’s governing XML Schema and the FCR Schema object’s defining 

FCR Schema. 

 
<<becomes>>

(unmarshal)
FCR Schema Object

FCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Intermediate XML Schema

Intermediate XML Document

 
Figure VII-14. Process for Converting XML Instance Document to its Equivalent FCR 

Schema Object 

 
The first thing the destination translator must do upon receipt of the 

intermediate XML instance document is to determine which unmarshal method to use to 

effect the conversion.  This is accomplished in the same manner as was described in 

Section VII.C.1.a for converting an exported XML instance document to its 

corresponding object representation.  As mentioned there, the OOMI IDE and translator 

use the XML namespace URI included with the intermediate XML instance document to 

locate the FCR and included FCR Schema instance containing the required unmarshal 

method.  For the example “groundCombatVehicle_View1.xml” intermediate XML 

instance document seen in Figure VII-13, the “http://nps.navy.mil/cs/oomi/-

FCR/groundCombatVehicle_View1” namespace URI is used to locate the GroundCombat-

Vehicle_View1 FCR Schema containing the required unmarshal method. 

Upon receipt of the XML instance document from the source model 

translator, the destination model translator determines the proper FCR Schema and 

invokes its unmarshal method to convert the document to its equivalent object 

representation.  Figure VII-15 shows the groundCombatVehicle_View1 FCR Schema 
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object that results from applying the GroundCombatVehicle_View1 FCR Schema 

unmarshal method to the received “groundCombatVehicle_View1.xml” XML instance 

document representation. 
 

<<becomes>>

(unmarshal)

<<becomes>>

(Source Generation)

<<instance of>>

<<instance of>>

<< Intermediate XML Document>>
<?xml version="1.0" encoding="UTF -8"?> 
< ="http://nps.navy.mil/cs/oomi/fiomA

="http://www.w3.org/2001/XMLSchema -instance"
="http://nps.navy.mil/cs/oomi/fiomA  

 F:\PHD~1.MAT\Dissertation\Chapter7\CHAPTE~2\groundCombatVehicleView1.xsd "> 
 < >battleTank</ > 
 < > 
  < > 
   < >392451</ > 
   < >N</ > 
  </ > 
  < > 
   < >0814413</ > 
   < >W</ > 
  </ > 
 </ > 
 < > 
  < >16</ > 
  < >22</ > 
  < >41</ > 
  < >Z</ > 
 </ > 
 < >720</ > 
</ > 

<< Intermediate XML Schema>>
<?xml version="1.0" encoding="UTF -8"?> 
< ="http://nps.navy.mil/cs/oomi/fiomA "

="http://www.w3.org/2001/XMLSchema ="http://nps.navy.mil/cs/oomi/fiomA "
="qualified ="unqualified"> 

 < ="groundCombatVehicleView1 "> 
  < > 
   < > 
    < >This sample schema provided for example in Figure III -3.   
    groundCombatVehicleView1 provides same perspective of ground combat vehicle  
    real-world entity as System B mechanizedCombatVehicle model. </ > 
   </ > 
   < > 
    < ="type ="fiomA:vehicleType ="0"/> 
    < ="fiomA:position ="0"/> 
    < ="fiomA:time ="0"/> 
    < ="range ="fiomA:distanceInNmType ="0"/> 
   </ > 
  </ > 
 </ > 
 < ="vehicleType"> 
  < ="xsd:string"> 
   < ="5"/> 
   < ="16"/> 
   < ="battleTank"/> 
   < ="rocketLauncher"/> 
   < ="truck"/> 
   < ="personnelCarrier "/> 
   < ="reconVehicle"/> 
   < ="unknown"/> 
  </ > 
 </ > 
 < ="position"> 
  < > 
   < > 
    < /> 
   </ > 
   < > 
    < ="latitude" ="fiomA:latitudeType "/> 
    < ="longitude ="fiomA:longitudeType "/> 
   </ > 
  </ > 
 </ > 
 < ="time"> 
  < > 
   < > 
    < >The day of a month  and timekeeping in hours and minutes of a calendar day, 
using the 24-hour clock system and an associated time zone. </ > 
   </ > 
   < > 
    < ="stdDay ="fiomA:stdDayType "/> 
    < ="stdHourTime ="fiomA:stdHourTimeType "/> 
    < ="stdMinuteTime " ="fiomA:stdMinuteTimeType "/> 
    < ="stdTimeZone ="fiomA:stdTimeZoneType "/> 
   </ > 
  </ > 
 </ > 
 < ="distanceInNmType"> 
  < ="xsd:integer"> 
   < ="0"/> 
   < ="1000"/> 
  </ > 
 </ > 

   . 
   . 

groundCombatVehicle_View1_FCR_Schema:
GroundCombatVehicle_View1_FCR_Schema
type =battleTtank
position = 392451N 0814413W
time = 162241Z
range = 720

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema Object>>

GroundCombatVehicle_View1_FCR_Schema

type : VehicleType
position : Position
time : Time
range : DistanceInNmType

getType
getPosition()
getTime()
getRange()
setType()
setPostion()
setTime()
setRange()
marshal()
unmarshal()

<<FCR Schema>>
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Figure VII-15. Conversion from XML Instance Document Representation back to 
Intermediate Object Representation 
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b. Resolving Differences in View between Received Intermediate 
Model and Destination Model of Real-World Entity 

From the received intermediate FCR Schema object, the translator 

identifies the FCR Schema Inheritance Hierarchy containing the object’s defining FCR 

Schema.  This FCR Schema Inheritance Hierarchy is used to resolve differences in view 

between the received intermediate model and the destination model of the exported real-

world entity.  Differences in view are resolved by locating the destination system model 

of the real-world entity modeled by the received FCR Schema object and determining 

whether substitution of this received FCR Schema object would be behaviorally 

indistinguishable to destination applications expecting the destination system model of 

the entity.  The substitution would be behaviorally indistinguishable to destination 

applications if all the mandatory attributes and operations expected for an object of the 

destination CCR Schema were contained in the received FCR Schema object and 

differences in representation of those properties could be resolved.  The destination 

translator examines the FCR Schema Inheritance Hierarchy as well as the FCR Schema 

Inheritance Hierarchies of any supertype FEs to determine if such an FEV containing a 

CCR for the destination system exists.  If so, the destination translator uses the 

information contained in the received FCR Schema object to create a new FCR Schema 

object whose attribute and operation sets correspond to those of the destination system’s 

CCR Schema.  The methodology for making that determination is described as follows. 

The destination translator searches the FCR Schema Inheritance Hierarchy 

containing the received intermediate object’s defining FCR Schema for an FEV 

containing a CCR for the destination system.  If such a CCR is found, the destination 

CCR Schema is examined to determine if all mandatory properties (attributes and 

operations) contained in the CCR Schema have a corresponding property in the received 

intermediate object’s defining FCR Schema.  Determination of whether a property is 

mandatory is made by examining the minOccurs attribute of each property.  This CCR 

Schema attribute is automatically set from the corresponding attribute contained in the 

XML Schema used for CCR Schema creation.  A value for minOccurs of zero indicates 

the property is optional; otherwise it is regarded as mandatory. 
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If all of the mandatory properties contained in the destination CCR 

Schema do not have a corresponding property in the received FCR Schema object or if 

the FCR Schema Inheritance Hierarchy does not contain an FEV with CCR defined for 

the destination system, then the FIOM is searched to determine if a supertype of the FE 

containing the received FCR Schema object exists.  If so, the translator searches the FCR 

Schema Inheritance Hierarchy of the supertype FE for an FEV containing a CCR for the 

destination system as previously described.  If found, the destination system CCR 

Schema is examined to determine if all mandatory attributes and operations contained in 

the CCR Schema have a corresponding property in the received FCR Schema object.  

Then, if all mandatory properties contained in the CCR Schema have a corresponding 

property in the received FCR Schema object, a new FCR Schema object is created whose 

view corresponds to the destination system CCR Schema.  If not, the process continues 

with the supertype of the FE currently being checked, until the FIOM root is reached. 

If no FE is found with an FEV containing a CCR for the 

destination system such that all mandatory attributes and operations contained in the CCR 

Schema have a corresponding property in the received intermediate object’s defining 

FCR Schema, then a translation failure is logged for interoperability engineer 

notification.  The interoperability engineer may use logged translation failures to drive 

the requirements for future component system modification if the system federation 

requires the failed information or operation exchange. 

From our continuing example, Figure VII-16 depicts an excerpt 

from the FCR Schema Inheritance Hierarchy for the ground combat vehicle real-world 

entity introduced in Figure IV-3.  In our example, System B is exporting an XML 

document representation of an instance of its model of the ground combat vehicle real-

world entity for import to System D, as captured in the file “mechanizedCombat-

Vehicle.xml” seen in Figure VII-6.  As seen in Sections VII.C.1.a and VII.C.1.b, the 

source System B translator has already converted the exported XML instance document 

to its equivalent object representation, and translated the component system object 

representation to an equivalent intermediate object representation.  The next step in the 

process is for the destination model translator to translate this intermediate ground-
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CombatVehicle_View1 object to a behaviorally equivalent intermediate model object 

representation.  In order to accomplish this step the translator uses the FCR Schema 

Inheritance Hierarchy containing the received groundCombatVehicle_View1 object’s 

defining FCR Schema. 

 
groundCombatVehicle

groundCombatVehicle_View1_FCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : DistanceInNmType

getRange( )
setRange(Range)

<<FCR Schema>>

groundCombatVehicle_View2_FCR
groundCombatVehicle_View2

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : VehicleType
position : Position
time : Time

getType( )
getPosition( )
getTime( )
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

groundCombatVehicle_View3_FCR

armoredFightingVehicle_CCR

groundCombatVehicle_View3

GroundCombatVehicle_View3_FCR_Schema : FCR_Schema

status : Status

getStatus( )
setStatus(Status)

<<FCR Schema>>

<<CCR Schema>>

1

1 ArmoredFightingVehicle_CCR_Schema : CCR_Schema

afvClassification : AfvClassificationType
afvLocation : AfvLocation
afvObsTime : AfvObsTime
afvStatus : AfvStatusType

getAfvClassification( )
getAfvLocation( )
getAfvObsTime( )
getAfvStatus( )
setAfvClassification(AfvClassification)
setAfvLocation(AfvLocation)
setAfvObsTime(AfvObsTime)
setAfvStatus(AfvStatus)

mechanizedCombatVehicle_CCR

<<CCR Schema>>
1

MechanizedCombatVehicle_CCR_Schema : CCR_Schema
mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius: DistanceInKmType

getMcvType( )
getMcvLocation( )
getMcvTime( )
getMcvRadius( )
setMcvType(McvType)
setMcvLocation(McvLocation)
setMcvTime(McvTime)
setMcvRadius(McvRadius)

System B System D

 
Figure VII-16. Example FCR Schema Inheritance Hierarchy Excerpt 

 
From the Figure VII-16 FCR Schema Inheritance Hierarchy it can 

be seen that the GroundCombatVehicle_View3 FEV contains a CCR for the System D 

destination, ArmoredFightingVehicle CCR.  Further investigation of the Armored-

FightingVehicle CCR Schema shown in Figure VII-20 reveals that all of the mandatory 

attributes contained in the CCR Schema, afvClassification, afvLocation, and afvObsTime, 

have a corresponding property in the received object’s defining GroundCombat-

Vehicle_View1 FCR Schema, attributes type, position, and time, respectively.  Therefore, 
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the destination translator uses the information contained in the received GroundCombat-

Vehicle_View1 FCR Schema instance to create an instance of the GroundCombat-

Vehicle_View3 FCR Schema corresponding to the destination ArmoredFightingVehicle 

CCR Schema.  Associations between the CCR Schema and its corresponding FCR 

Schema attributes and operations established during FCR-CCR Translation class creation 

discussed in Section V.D.2.c are used in determining whether a CCR Schema’s 

mandatory properties are satisfied by a received FCR Schema object. 

c. Translation From Intermediate Object Representation to 
Destination Object Representation 

Translation from the intermediate object representation to the destination 

model object representation is accomplished through the use of the translate method 

defined for the FCR-CCR Translation class associated with the destination CCR Schema 

determined by the translator as discussed in Section VII.C.2.b.  The translate method 

defined for the selected FCR-CCR Translation class is applied to the FCR Schema object 

corresponding to the destination CCR Schema created from the received FCR Schema 

object as discussed in Section VII.C.2.b.  Figure VII-17 depicts application of the FCR-

CCR Translation class translate method to this new class, converting it from an 

intermediate object representation to the destination model object representation. 

 
<<becomes>>

(translate)
CCR Schema Object

FCR-CCR Translation Class

FCR Schema Object

 
Figure VII-17. FCR Schema Object to CCR Schema Object Translation 
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From our continuing example, the GroundCombat-

Vehicle_View3__ArmoredFightingVehicle Translation class associated with the 

destination ArmoredFightingVehicle CCR Schema, would be used to convert the 

GroundCombatVehicle_View3 FCR Schema object created from the received Ground-

CombatVehicle_View1 FCR Schema object to its behaviorally equivalent destination 



object representation.  Figure VII-18 illustrates application of this class’s 
translate(groundCombatVehicle_View3 : GroundCombatVehicle_View3) : ArmoredFightingVehicle 
method on the received GroundCombatVehicle_View3 FCR Schema instance to produce 

an instance of the ArmoredFightingVehicle CCR Schema. 

 

<<becomes>>

(translation)

GroundCombatVehicle_View3__ArmoredFightingVehicle

translate(groundCombatVehicle_View3: GroundCombatVehicle_View3) : ArmoredFightingVehicle

groundCombatVehicle_View3_FCR_Schema:
GroundCombatVehicle_View3_FCR_Schema
type = battleTank
position = 392451N 0814413W
time = 162241Z
status = null

getType
getPosition()
getTime()
getStatus()
setType()
setPostion()
setTime()
setStatus()
marshal()
unmarshal()

<<FCR Schema Object>>
armoredFightingVehicle_CCR_Schema:
ArmoredFightingVehicle_CCR_Schema

afvClassification = battleTank
afvLocation = 392451N 0814413W
afvObsTime =162241Z
afvStatus = null

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification()
setAfvLocation()
setAfvObsTime()
setAfvStatus()
marshal()
unmarshal()

<<CCR Schema Object>>

<<FCR-CCR Translation>>

 
Figure VII-18. Translating from Intermediate to Destination Object Representation 

 
d. Converting From Destination Object Representation to 

Destination XML Document Representation   
The last step in converting from an intermediate to a destination model of 

a real-world entity involves the conversion from an object representation of the 

destination model of the received real-world entity to an XML document representation.  

Conversion from a destination object representation to an XML instance document 

representation of the exported information is accomplished by use of the marshal method 

generated with the CCR Schema defining the destination object representation.  The 

destination translator uses this CCR Schema object’s marshal method to convert the 

object representation to its equivalent XML instance document representation.  Figure 

VII-19 illustrates the process for converting the CCR Schema object to its equivalent 
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XML instance document representation and the relationship between the CCR Schema 

object’s defining CCR Schema and the XML instance document’s governing XML 

Schema. 

 
<<becomes>>

(marshal)
CCR Schema Object

CCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Destination XML Schema

Destination XML Document

 
Figure VII-19. Process for Converting CCR Schema Object to its Equivalent XML 

Instance Document 

 
From our continuing example, Figure VII-20 depicts the destination XML 

Schema used to generate the selected ArmoredFightingVehicle CCR Schema.  The 

destination model translator uses the marshal method from this class to convert the 

destination CCR Schema instance to an equivalent destination XML instance document.  

This destination XML instance document is then forwarded to the destination system 

application for action.  Figure VII-21 illustrates the conversion from an object 

representation of our ArmoredFightingVehicle object to its equivalent XML instance 

document representation, the contents of which are displayed in Figure VII-22. 

D. TRANSLATOR SUMMARY 
The purpose of the translator presented in this chapter is to resolve heterogeneities 

in state and behavioral information shared among systems in order to enable their 

interoperation.  These heterogeneities can be categorized as either a difference in view or 

differences in representation of a view of the real-world entities whose state and behavior 

are shared among systems.  Under the Object-Oriented Method for Interoperability 

(OOMI), an interoperability engineer captures these differences in  
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<?xml version="1.0" encoding="UTF-8"?> 
< ="http://nps.navy.mil/cs/oomi/systemD"

="http://nps.navy.mil/cs/oomi/systemD/armoredFightingVehicle"
="http://www.w3.org/2001/XMLSchema" ="qualified"

="unqualified"> 
 < ="armoredFightingVehicle"> 
  < > 
   < > 
    < >An armoredFightingVehicle msgtype provides System D model of ground 
     combat vehicle real-world entity for the example in Figure III-3.</ > 
   </ > 
   < > 
    < ="afvClassification" ="systemD:afvClassificationType"/> 
    < ="systemD:afvLocation"/> 
    < ="systemD:afvObsTime"/> 
    < ="afvStatus" ="systemD:afvStatusType" ="0"/> 
   </ > 
  </ > 
 </ > 
 < ="afvClassificationType"> 
  < ="xsd:string"> 
   < ="5"/> 
   < ="14"/> 
   < ="battleTank"/> 
   < ="rocketLauncher"/> 
   < ="truck"/> 
   < ="unknown"/> 
  </ > 
 </ > 
 < ="afvLocation"> 
  < > 
   < > 
    < /> 
   </ > 
   < > 
    < ="latitude" ="systemD:latitudeType"/> 
    < ="longitude" ="systemD:longitudeType"/> 
   </ > 
  </ > 
 </ > 
 < ="afvObsTime"> 
  < > 
   < > 
    < >The day of a month and timekeeping in hours and minutes of a  
     calendar day, using the 24-hour clock system referenced to Greenwich Mean Time  
     (GMT).</ > 
   </ > 
   < > 
    < ="day" ="systemD:dayType"/> 
    < ="hourTime" ="systemD:hourTimeType"/> 
    < ="minuteTime" ="systemD:minuteTimeType"/> 
    < ="stdTimeZone" ="systemD:stdTimeZoneType"/> 
   </ > 
  </ > 
 </ > 
 < ="afvStatusType"> 
  < ="xsd:string"> 
   < ="7"/> 
   < ="11"/> 
   < ="operational"/> 
   < ="damaged"/> 
   < ="destroyed"/> 
  </ > 
 </ > 

   . 
   . 
   . 
</ >  
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Figure VII-20. Destination XML Schema "armoredFightingVehicle.xsd" 
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<<becomes>>

(marshal)

<<becomes>>

(Source Generation)

<<instance of>>

<<instance of>>

armoredFightingVehicle_CCR_Schema:
ArmoredFightingVehicle_CCR_Schema

afvClassification = battleTank
afvLocation = 392451N 0814413W
afvObsTime =162241Z
afvStatus = null

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification()
setAfvLocation()
setAfvObsTime()
setAfvStatus()
marshal()
unmarshal()

<<CCR Schema Object>>

ArmoredFightingVehicle_CCR_Schema

afvClassification : AfvClassificationType
afvLocation : AfvLocation
afvObsTime : AfvObsTime
afvStatus : AfvStatusType

getAfvClassification()
getAfvLocation()
getAfvObsTime()
getAfvStatus()
setAfvClassification()
setAfvLocation()
setAfvObsTime()
setAfvStatus()
marshal()
unmarshal()

<<CCR Schema>>

<< Destination XML Schema>>
<?xml version="1.0" encoding="UTF -8"?> 
< ="http://nps.navy.mil/cs/oomi/systemD

="http://nps.navy.mil/cs/oomi/systemD ="http://www.w3.org/2001/XMLSchema"
="qualified ="unqualified"> 

 < ="armoredFightingVehicle"> 
  < > 
   < > 
    < >An armoredFightingVehicle msgtype provides System D model of ground  
     combat vehicle real-world entity for the example in Figure III -3.</ > 
   </ > 
   < > 
    < ="afvClassification ="systemD:afvClassificationType "/> 
    < ="systemD:afvLocation"/> 
    < ="systemD:afvObsTime"/> 
    < ="afvStatus ="systemD:afvStatusType ="0"/> 
   </ > 
  </ > 
 </ > 
 < ="afvClassificationType"> 
  < ="xsd:string"> 
   < ="5"/> 
   < ="14"/> 
   < ="battleTank"/> 
   < ="rocketLauncher"/> 
   < ="truck"/> 
   < ="unknown"/> 
  </ > 
 </ > 
 < ="afvLocation"> 
  < > 
   < > 
    < /> 
   </ > 
   < > 
    < ="latitude ="systemD:latitudeType"/> 
    < ="longitude ="systemD:longitudeType"/> 
   </ > 
  </ > 
 </ > 
 < ="afvObsTime"> 
  < > 
   < > 
    < >The day of a month and timekeeping in hours and minutes of a  
     calendar day, using the 24-hour clock system referenced to Greenwich Mean Time  
     (GMT).</ > 
   </ > 
   < > 
    < ="day ="systemD:dayType"/> 
    < ="hourTime ="systemD:hourTimeType"/> 
    < ="minuteTime ="systemD:minuteTimeType"/> 
    < ="stdTimeZone ="systemD:stdTimeZoneType"/> 
   </ > 
  </ > 
 </ > 
 < ="afvStatusType"> 
  < ="xsd:string"> 
   < ="7"/> 
   < ="11"/> 
   < ="operational"/> 
   < ="damaged"/> 
   < ="destroyed"/> 
  </ > 
 </ > 

   . 
   . 
   . 
</ > 

<< Destination XML Document>>
<?xml version="1.0" encoding="UTF -8"?> 
< ="http://nps.navy.mil/cs/oomi/systemD

="http://www.w3.org/2001/XMLSchema-instance
="http://nps.navy.mil/cs/oomi/systemD  

C:\Translator\OOMI\projects\testapps\armoredFightingVehicle.xsd"> 
 < >battleTank</ > 
 < > 
  < > 
   < >392451</ > 
   < >N</ > 
  </ > 
  < > 
   < >0814413</ > 
   < >W</ > 
  </ > 
 </ > 
 < > 
  < >16</ > 
  < >22</ > 
  < >41</ > 
  < >Z</ > 
 </ > 
 < >operational</ > 
</ > 
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Figure VII-21. Conversion From Destination Object Representation to Destination XML 
Instance Document Representation 

 

view and representation in a Federation Interoperability Object Model (FIOM) created 

for a specified federation of systems prior to runtime.  Then at runtime, information 

contained in the FIOM is used to resolve system modeling differences.   

Differences in view are resolved through exploitation of the commonalities 

among systems of different views of the same real-world entity.  Differences in view 
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representation are resolved by use of translations defined by the interoperability engineer 

prior to runtime and stored in the FIOM for each component system model of the real-

world entity.  In order to minimize the number of required translations, the OOMI 

translator uses a two-step process, involving the use of an intermediate model for each 

real-world entity involved in system interoperation.  In the first step the source model of a 

real-world entity is translated to an equivalent intermediate model of that entity.  In the 

second step, the intermediate model of the real-world entity is translated to a behaviorally 

equivalent model suitable for use by the destination system. 

 
<?xml version="1.0" encoding="UTF-8"?> 
< ="http://nps.navy.mil/cs/oomi/systemD"

="http://www.w3.org/2001/XMLSchema-instance"
="http://nps.navy.mil/cs/oomi/systemD 

C:\Translator\OOMI\projects\testapps\armoredFightingVehicle.xsd"> 
 < >battleTank</ > 
 < > 
  < > 
   < >392451</ > 
   < >N</ > 
  </ > 
  < > 
   < >0814413</ > 
   < >W</ > 
  </ > 
 </ > 
 < > 
  < >16</ > 
  < >22</ > 
  < >41</ > 
  < >Z</ > 
 </ > 
 < >operational</ > 
</ >  

armoredFightingVehicle

afvClassification afvClassification
afvLocation

latitude
latDegMinSec latDegMinSec
nsHemisphere nsHemisphere

latitude
longitude

longDegMinSec longDegMinSec
ewHemisphere ewHemisphere

longitude
afvLocation

afvObsTime
day day
hourTime hourTime
minuteTime minuteTime
stdTimeZone stdTimeZone

afvObsTime
afvStatus afvStatus

armoredFightingVehicle

 xmlns  
xmlns:xsi  
xsi:schemaLocation

Figure VII-22. Destination XML Instance Document "armoredFightingVehicle.xml" 

 
Source to intermediate model translation first involves conversion of the 

information exported by a source system from an XML instance document representation 

to an object representation of that information, captured in the OOMI as a Component 

Class Representation (CCR) Schema object.  The next step involves conversion from the 

source object representation to the corresponding intermediate object representation, 

depicted as a Federation Class Representation (FCR) Schema object under the OOMI.  

The final optional step entails converting the intermediate object representation to an 

intermediate XML instance document representation if the federation architecture uses 
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XML for transferring information among systems.  Figure VII-23 illustrates the source to 

intermediate model translation process implemented by the OOMI translator. 

 
<<becomes>>

(unmarshal)
CCR Schema Object

CCR Schema
<<becomes>>

(XML data binding)

<<conforms to>> <<instance of>>

Source XML Schema

Source XML Document
<<becomes>>

(translate)

FCR-CCR Translation Class

FCR Schema Object
<<becomes>>

(marshal)

FCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Intermediate XML Schema

Intermediate XML Document

 
Figure VII-23. Source to Intermediate Model Translation 

 
Translation from an intermediate to a destination model of a real-world entity 

defining an interoperation requires resolution of potential differences in view as well as 

possible differences in representation between intermediate and destination models.  

Unless the source and destination systems have the same view of the real-world entity 

being modeled, the intermediate model will have a different view of the modeled real-

world entity than the destination system.  Intermediate to destination model translation 

therefore first requires resolution of the differences in view between the intermediate and 

destination models and then resolution of differences in view representation. 

Converting from an intermediate to a destination model of a real-world entity 

involves four steps.  First, if the translator receives the intermediate model in the form of 

an XML instance document, then it must first convert the received XML instance 

document to its equivalent object representation, captured as an FCR Schema object in 

the OOMI.  Second, the translator must resolve differences in view between the 

intermediate and destination models.  Third, the translator must resolve differences in 

representation for a specified view, producing a CCR Schema object reflective of the 

destination model of the real-world entity.  Fourth, the destination model must be 

converted from an object representation to an equivalent XML instance document 

representation for forwarding to the destination system application.  Figure VII-24 

depicts the intermediate to destination model translation process of the OOMI translator. 

The OOMI translator presented in this chapter offers an improvement in the 

methodology used by systems in Chapter II representing the current state of the practice 
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toward achieving system interoperability.  This improvement is provided in three areas.  

First, the OOMI translation methodology utilizes a two-step process that requires the 

definition of a maximum of 2n translations to resolve representational differences among 

a federation of n systems.  This is a reduction from the n(n-1) translations required using 

point-to-point system interfaces when the number of involved systems exceeds three.  

Second, the runtime translation process is fully automated requiring no operator 

intervention once an FIOM is constructed for a specified system federation.  Third, the 

OOMI translator provides the capability to log translation failures for input to the 

requirements process for future component system modification. 

 
<<becomes>>

(unmarshal)
FCR Schema Object

FCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>

Intermediate XML Schema

Intermediate XML Document
<<becomes>>

(translate)
CCR Schema Object

FCR-CCR Translation Class

<<becomes>>

(marshal)

CCR Schema
<<becomes>>

(XML data binding)

<<conforms to>><<instance of>>
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Figure VII-24. Intermediate to Destination Model Translation 

 
The OOMI translator prototype implemented by [Lee02] demonstrates the use of 

a two-step translation process in automating the conversion between models of 

information shared among systems in a sample federation.  The capability for translation 

failure logging is not provided in the initial prototype, but is planned for future 

implementations. 
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VIII. CONCLUSION AND RECOMMENDATIONS FOR FUTURE 
RESEARCH 

 
 
 

A. REVIEW OF CRITERIA USED FOR EVALUATING 
INTEROPERABILITY APPROACHES AND LIMITATIONS SEEN IN 
CURRENT SYSTEMS 
In Chapter II eight criteria for evaluating approaches for achieving 

interoperability among heterogeneous systems were identified.  Those criteria are listed 

below and explained in Section II.B.  The eight criteria used are: 

• Types of heterogeneity addressed 
• Capability for application of computer aid for model correlation 
• Required knowledge of remote operations 
• Required modification to existing system 
• Translation methodology used 
• Capability for application of computer aid for translation development 
• Support for Federation Extensibility 
• Information exchange versus joint task execution 

 
Six of the most pertinent existing approaches for achieving interoperability among 

heterogeneous systems were evaluated against these criteria.  From that evaluation, the 

following limitations were seen in some or all of the existing approaches. 

• None of the systems evaluated provide a means for resolving the complete 
spectrum of modeling differences found among heterogeneous systems. 

• Only one of the existing approaches provide assistance in determining when 
different system models refer to the same entity from the problem domain. 

• All of the current approaches require a requesting system to conform to a 
provider’s model of requested state or behavior information, requiring 
modification to the requestor if not already conformant. 

• Most of the evaluated approaches utilize a point-to-point conversion process for 
resolving modeling differences among systems vice a two-step process using an 
intermediate model, resulting in a greater number of translations to be defined 
when the number of systems to be integrated exceeds three. 

• Most of the approaches provide little or no support to the development of the 
translations required to resolve modeling differences among systems. 

• Most approaches are concerned only with the resolution of modeling differences 
for information exchanged among systems and do not provide the capability for 
resolving possible differences in the signatures used to access the behavior of 
corresponding methods on different systems. 
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In response to these limitations and in answer to the research question raised in 

Section I.C, the Object-Oriented Method for Interoperability (OOMI) introduced in 

Chapter IV was developed to provide a means for resolving the differences in data 

models among heterogeneous systems that have hampered the quest for system 

interoperability.  An evaluation of the OOMI’s success in this endeavor is provided next. 

B. EVALUATION OF OBJECT-ORIENTED METHOD FOR INTEROPER-
ABILITY AGAINST INTEROPERABILITY COMPARISON CRITERIA 
In this section the OOMI is evaluated against the Section II.B criteria used for 

comparing interoperability approaches.  As part of the discussion, a look at how the 

OOMI addresses the limitations seen in the previous interoperability approaches is 

provided.  The results of that evaluation are summarized in Table VIII-1 and discussed in 

the following paragraphs. 

1. Types of Heterogeneity Addressed 
The OOMI provides the interoperability engineer with the means for addressing 

each of the types of heterogeneity defined in Section II.A.2.  Under the OOMI, a 

Federation Entity (FE) is defined for each real-world entity whose state and behavior are 

shared among systems in a federation.  As described in Section IV.C.1.b(1), for each FE 

one or more Federation Entity Views (FEVs) are used to distinguish differences in what 

real-world-entity characteristics are modeled by different systems due to heterogeneities 

in scope, level of abstraction, or temporal validity.  These differences are captured by 

variations in the number and composition of the attributes and operations used for 

modeling the same real-world entity on different systems.  Commonalities in the 

attributes and operations used to define an FEV are used to construct an inheritance 

hierarchy for the FEV relating the models that can be used to determine when the 

information contained in one system’s view of an entity is suitable for use by another. 

In addition to differences in what characteristics are chosen to model a real-world 

entity, there may be variations in how these characteristics are represented on different 

component systems.  These variations may be due to heterogeneities of hardware and 

operating systems, organizational models, structure, presentation, and meaning found on 

the different systems.  In order to capture these differences, the OOMI provides two 

mechanisms to denote the possible alternative representations of an entity’s view.  The 
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first mechanism, the Federation Class Representation (FCR), is used to reflect the 

“standard” (as defined by the interoperability engineer) representation used by the 

federation for an entity’s view.  The second mechanism, the Component Class 

Representation (CCR), is used to capture a component system’s representation of an 

FEV. 

 

Table VIII-1. Evaluation of OOMI Support for Resolution of Modeling Differences 

Evaluation Criteria OOMI 
Types of Heterogeneity 

Addressed 
Hardware and Operating System; 
Organizational Models; 
Structure; 
Presentation; 
Meaning; 
Scope; 
Level of Abstraction; 
Temporal Validity; 

Capability for Application 
of Computer-Aid for 
Model Correlation? 

Yes.  Syntactic and Semantic correlation algorithm. 

Knowledge of Remote 
System Methods Required? 

No.  Correlation algorithm will assist Interoperability  
Engineer in finding remote system method 
corresponding to local (client) invocation. 

Modification to Existing 
System Required? 

No.  Translator implemented as middleware or using 
wrapper-based approach. 

Translation Methodology? Two-step using intermediate representation.   
Capability for Application 

of Computer-Aid for 
Translation Development? 

Computer-aided generation of translation skeleton; 
library maintained for functional transformation 
reuse. 

Support for Federation 
Extensibility 

Partial support.  Additions or changes to existing FCR 
Schema attribute and operation representations 
may affect existing translations used to resolve 
representational differences between CCR and 
FCR Schemas. 

Information Exchange vs. 
Joint Task Execution 

Both information exchange and joint task execution. 
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Differences between component representations are resolved by means of a two-

step translation process whereby a source CCR is first converted to its equivalent FCR 

and then to the corresponding destination CCR.  Translations are defined for each FEV to 

enable conversion between each CCR and the corresponding FCR.  Section IV.C.1.b(3) 

details the means for resolving FEV representation differences. 

As described in Chapter VII, the OOMI translator uses information from the 

FEV’s FCR Schema Inheritance Hierarchy and FCR-CCR Translations to resolve 

heterogeneities among federation systems.  The translator uses the FEV’s FCR Schema 

Inheritance Hierarchy to resolve differences in view among systems, as caused by 

heterogeneities of scope, level of abstraction, and temporal validity.  The translator uses 

an FCR-CCR Translation associated with each component representation of a view 

(CCR) to resolve heterogeneities of hardware and operating systems, organizational 

models, structure, presentation, and meaning. 

2. Capability for Application of Computer Aid for Model Correlation 
During construction of a Federation Interoperability Object Model (FIOM) for a 

specified federation of systems, correspondences between information and operations 

exported from or imported to the component systems must be identified in order to enable 

system interoperability.  The OOMI Integrated Development Environment (IDE) 

provides computer-aid for identifying these correspondences. 

As described in Section VI.B, the correlation methodology implemented for the 

OOMI IDE is used to assist the interoperability engineer in adding a CCR to the FIOM 

during the Register CCR phase of IDE operation.  Assistance is provided to the 

interoperability engineer in terms of computer aid for finding the FE corresponding to the 

same real-world entity modeled by the CCR being registered.  The OOMI IDE 

correlation methodology uses a two-phased approach for establishing this 

correspondence. 
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In the first phase, semantic information in the form of keywords taken from 

descriptions of the component and federation models of the real-world entity is used to 

establish the correspondence.  In the second phase, details about the structure and 

composition of the attributes and operations used for the component and federation 

models of a real-world entity are used to correlate the models.  Potential correspondence 



between a CCR and an FCR is given in terms of a score for both the semantic and 

syntactic phases of the correlation effort.  Comparison of scores among potential FCR 

matches will direct the interoperability engineer toward the most likely match for a CCR.  

However, final determination of CCR-FCR correlation requires a one-to-one 

correspondence between the attribute and operation sets of a potential CCR-FCR match 

as discussed in Section V.C.3.b.  This determination is the responsibility of the 

interoperability engineer and is not automated in the OOMI IDE. 

3. Required Knowledge of Remote Operations 
Under the OOMI, definition of an intermediate model of the real-world entities 

involved in the interoperation between systems as described in Section IV.C.1.b(2) and 

the use of the two-step translation methodology described in Section VII.C mean that one 

system does not have to prior knowledge of another in order to exchange information or 

execute the other’s tasks. 

For information exchange the source system provides the exported information in 

the form of a set of attributes or objects of a producer class in the native format of the 

producer.  The exported information is first converted into a corresponding intermediate 

model by an OOMI source model translator using a source-to-intermediate model 

translation captured as part of the FIOM during federation design.  Then, in a second 

step, executed by a corresponding OOMI destination model translator, the intermediate 

model of the exported information is converted into the destination consumer system 

model.  Neither the source nor destination systems require any knowledge of the 

information model used by the other system.  Each is concerned only with the conversion 

between component and intermediate models using translations defined during federation 

design. 
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For joint task execution, a client system provides an operation name and a set of 

parameter values for a desired operation in the native format of the client.  The 

parameters may be attributes, operations, or objects of a client class.  The OOMI source 

model translator first converts the operation name and parameter values into a 

corresponding intermediate model using a source-to-intermediate model translation 

captured in the FIOM.  Then, the OOMI destination model translator for a system 

containing an implementation of a behaviorally equivalent operation converts the 



intermediate model of the operation name and parameter values to the corresponding 

model recognized by the destination server system.  Again, neither the source nor 

destination systems require any knowledge of the information model used by the other 

system. 

The information required to effect these translations is captured as part of the 

FIOM during federation design.  Correlation software is used to help an interoperability 

engineer locate other component systems containing a model of the same real-world 

entities exported or imported by a particular system.  This information is used in 

constructing a federation model of the real-world entities involved in the system 

interoperation (the FIOM).  Then, at run-time, an OOMI translator accesses the 

information contained in the FIOM to resolve differences in view of the component 

system models and to effect the translation between component and standard 

representations of a view. 

4. Required Modification to Existing System 
The use of an intermediate model of the real-world entities involved in the 

interoperation between systems and the use of the two-step translation methodology 

described in Section VIII.B.3, together with a wrapper or middleware based 

implementation of the OOMI translator, eliminates the requirement for existing system 

modification in order to resolve heterogeneities among system models. 
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In a wrapper-based approach, the translator is implemented as a software 

intermediary that logically envelops a component system.  The wrapper functions to 

intercept incoming and outgoing information from the wrapped system and convert it 

between component and intermediate models.  In a system federation where the translator 

is implemented as part of middleware in a hub-and-spoke architecture, the translator 

serves the same function as in the wrapper-based approach.  The primary difference 

between the architectures lies in the number of translators required and in the location of 

the translator(s).  In a hub-and-spoke architecture a single source and destination model 

translator is typically implemented on a separate platform between the source and 

destination systems.  In a wrapper-based architecture, separate translators are required for 

each system in the federation and will commonly reside on the same hardware platform 

as the component system. 



As a result of the two-step translation methodology, no modifications to the 

component systems are required to resolve differences among system models.  The 

translator accomplishes any translations required between models.  Modifications to the 

component systems are required only if a change to the external interface is required to 

expose information or operations available internally in a component system or to take 

advantage of information or operations exposed by other systems. 

5. Translation Methodology 
As pointed out in Section VII.C the OOMI translator uses a two-step process, 

involving the use of an intermediate representation, to reduce the number of required 

translations.  In the first step, an object conforming to the source model of a real-world 

entity, captured as a CCR instance, is translated to an equivalent object conforming to the 

intermediate model of that entity in the form of an FCR instance.  In the second step, the 

intermediate model object of the real-world entity is translated to a behaviorally 

equivalent model suitable for use by the destination system.  This pair-wise approach to 

resolving representational differences between systems reduces the number of required 

translations from n(n-1) to 2(n) for a federation of n systems. 

6. Capability for Application of Computer Aid for Translation 
Development 

As discussed in Section  V.D.2.c, given corresponding federation and component 

models of a real-world entity whose information and operations are shared among 

systems, the OOMI IDE assists the interoperability engineer with defining the 

translations required to resolve representational differences between the models.  The 

OOMI IDE provides computer aid to the interoperability engineer for defining a 

translation in two areas.  The first area involves exploiting user-identified 

correspondences between component and federation models to provide a framework for 

translation definition.  The second area involves creation and maintenance of a library of 

pre-defined translation definitions for insertion into this translation framework. 

7. Support for Federation Extensibility 
Use of object-oriented design principles in the development of the FIOM supports 

creation of a model for achieving interoperability among heterogeneous systems that is 

extensible.  When adding a new component system to the federation, an evaluation is 
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made to determine if the real-world entities modeled by the component system are 

already represented in the FIOM.  If not, a new federation entity, complete with views 

and representations of those views, is added to the federation to which the component 

model of the entity will be included.  If such an FE already exists in the FIOM, then a 

determination is made as to whether there exists a view in the FE’s FCR Schema 

Inheritance Hierarchy whose FCR Schema exhibits a one-to-one correspondence with the 

attribute and operation set of the component system model of the real-world entity.  If so, 

the system designer simply adds a new CCR reflecting the component system model of 

the entity to the appropriate view.  If such a view does not exist, a new FEV is added for 

that entity to which the CCR will be included, and relationships established between the 

new FEV and existing views in the entity’s inheritance hierarchy.  Addition of federation 

entities, entity views, and representation of those views is accomplished without affecting 

existing model components or relationships and therefore without affecting existing 

translations and existing interoperability data path implementations. 

Modifying existing FCRs to change the representation of the FCR Schema 

attributes and operations presents a potential problem.  No FCR versioning support is 

provided in the FIOM.  Using inheritance to support versioning is complicated by the use 

of the FCR Schema Inheritance Hierarchy to capture relationships between different 

views of real-world entity.  Using inheritance at the FEV/FCR level would introduce 

problems associated with multiple inheritance.  Therefore, implementation of versioning 

support through inheritance would have to be implemented at the FE or FIOM level. 

In summary, additions to the federation that do not require modification to 

existing FCR Schema attribute and operation representations can be made without 

impacting interoperation of the original system federation.  Additions or changes that do 

require modification to existing FCR Schema attribute and operation representations may 

affect existing translations used to resolve representational differences between CCR and 

FCR Schemas.  Therefore, the OOMI is considered to provide partial support for 

federation extensibility. 

8. Information Exchange Versus Joint Task Execution 
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The OOMI provides the capability for resolving system heterogeneities during 

both information exchange and joint task execution.  As discussed in Section VII.A and 



reiterated in Section VIII.B.3, for information exchange the OOMI translator(s) convert 

exported information from the source system model to an equivalent model required by 

the destination system in a two-step translation process.  For joint task execution, the 

OOMI translator(s) similarly convert the name and parameters used to request a remote 

system operation from the client system model to the equivalent model required by the 

remote server system. 

C. RECOMMENDATIONS FOR FUTURE RESEARCH 
As an extension of the work provided in this dissertation, six areas for future 

research are recommended.  First, an evaluation of the efficiency and effectiveness of the 

OOMI in creating an interoperable federation from a sample group of independently 

developed systems is recommended.  Second, investigation of potential enhancements to 

the syntactic and semantic correlation methodology used to compare component and 

federation models of the real-world entities that define the interoperation among systems 

should be considered.  Third, further research is recommended to determine the means 

where information from two or more different producers can be combined to create a new 

view satisfying a consumer’s requirements.  Fourth, an investigation of areas where the 

correlation methodology used for comparing component and federation models of shared 

entities can be expanded to other aspects of the FIOM construction process should be 

conducted.  Fifth, extension of the OOMI IDE to operate as a distributed network 

application, thereby serving as an enabler for the broader application of the FIOM in 

providing an interoperability framework across a domain or domain segment, is 

suggested.  Finally, an investigation of the application of the methodology described in 

this dissertation to the real-time system domain should be considered. 

1. Evaluation of Efficiency and Effectiveness of OOMI in Creating an 
Interoperable Federation of Systems 

Key areas implemented in the initial OOMI IDE prototype include the 1) User 

Interface, 2) Component Model Correlator, 3) Translation Generator, 4) FIOM Database 

and 5) portions of the Federation Entity Manager.  In addition, implementation of the 

core heterogeneity resolution functionality of the OOMI translator has been completed.  

Completion of the OOMI IDE prototype implementation and integration of the OOMI 

translator core functionality into either a wrapper-based or middleware application is 
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required in order to evaluate the efficiency and effectiveness of the OOMI in creating an 

interoperable federation from a sample group of autonomously developed component 

systems.  Such an evaluation should include measurement of the time and effort required 

to create a federation of interoperable systems using the OOMI, an assessment of the 

OOMI’s capability for resolving the complete list of heterogeneities specified in 

Section II.A.2, and an appraisal of the correlation methodology used for FIOM 

construction. 

While Section VIII.B detailed the methodology used by the OOMI for resolving 

each of the types of heterogeneity specified in Section II.A.2, a complete assessment of 

the OOMI’s capability for heterogeneity resolution requires application of the 

methodology for actual system integration.  Such an assessment would require integration 

of systems exhibiting the complete spectrum of heterogeneities specified in 

Section II.A.2. 

The primary metrics to be used for an assessment of the correlation methodology 

used for FIOM construction are a determination of the precision and recall values 

attained when correlating component and federation models of the real-world entities 

involved in system interoperation.  As discussed in Sections VI.B.2.a and VI.B.2.b the 

interoperability engineer can set a threshold for display of candidate matches returned by 

either the semantic or syntactic correlation methodologies or by a combination of the two 

methods.  Values for precision and recall should be computed for each of these possible 

correlation alternatives, using a range of threshold values as input. 

2. Enhancements to Correlation Methodology 

a. Semantic Correlation Methodology 

 246

The semantic correlation methodology used in the initial prototype OOMI 

IDE is limited to providing a percent of keywords in the syntax component of a CCR 

matching keywords in an FCR’s syntax component.  Enhancement of the semantic 

correlation methodology to include synonyms to the CCR keyword as matches should 

increase precision and recall values returned by the semantic correlator.  Further 

improvement should also result from inclusion of a concept search feature such as 

provided with the Personal Librarian (PL) tool found in MITRE’s DELTA tool 

[BFH+95]. 



b. Syntactic Correlation Methodology 
Improvements in the syntactic correlation methodology used in the OOMI 

IDE can be made in two areas.  First, an increase in the number of data schema related 

elements included in the discriminator vectors used for neural network training and 

correlation determination should improve correlator performance.  Second, inclusion of 

data content as well as schema information in constructing the discriminator vectors for 

both component and federation models will add a limited semantic discrimination 

capability to the neural networks used for model correlation. 

Additional schema related elements that could be incorporated in the 

discriminator vectors include: 

• data precision 
• whether nullable variables are allowed 
• number of possible values for enumerable types 
• whether default value is provided 

 
While not a complete list of schema related information that might be 

available, the above elements should be easily extractable from the schema used to define 

a real-world entity’s structure and content. 

In the original SEMINT tool, the authors used data content as well as 

schema related information for constructing the discriminator vectors [LC00].  The 

addition of statistical information on the actual contents of the XML documents being 

produced and consumed by a system could provide a limited perspective on the semantics 

of an entity’s attributes or operations.  Additional data content level information such as 

the maximum and minimum values observed, and statistics on such observed values to 

include the average, standard deviation, and coefficient of variance could potentially help 

discriminate between elements that have the same type and composition.  For example, 

two elements could be modeled as six digit integers, but each provide a different usage; 

i.e., one element’s values are always in the range of 000000 to 235959 indicating a 

possible time-related quantity, whereas the other element’s values range from 000000 to 

999999 signifying an unrestricted numeric quantity.  Capturing data content information 

on these two elements would enable the neural network to distinguish their different uses. 
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3. Enabling Join Operations for Federation Entity View Definition 
In order to avoid difficulties with multiple inheritance in the construction of the 

FCR Schema Inheritance Hierarchy, join operations where information from two or more 

different producers can be combined to create a new view satisfying a consumer’s 

requirements are not permitted.  Methods for enabling such join operations while 

minimizing the difficulties associated with multiple inheritance are identified as an area 

for future research. 

4. Expansion of Correlation Methodology Application During FIOM 
Construction 

a. Application of Correlation Methodology to Mapping of 
Corresponding Attributes and Operations during Translation 
Generation. 

Using correspondences between component and federation models 

identified by the user, the OOMI IDE Translation Generator provides a framework for 

translation definition.  The user is presented with a graphical representation of the CCR 

and FCR Schemas from a Federation Entity View (FEV) and then given the capability to 

match attributes and operations between the two representations of that view via a “click-

to-select” procedure.  Applying the correlation methodology defined in Section VI.B.2 to 

the attribute and operation mapping process might prove beneficial in reducing the time 

and effort required for translation creation.  Attribute and operation correlation 

techniques could be used to provide a candidate mapping for interoperability engineer 

approval. 

b. Application of Correlation Methodology and Behavioral 
Equivalence Determination Algorithms to Modification of FIOM 
to Provide Required One-To-One Correspondence Between CCR 
and FCR Schemas During CCR Registration. 

If during FIOM construction, an existing FCR Schema cannot be found 

whose attribute and operation sets provide a one-to-one correspondence with the CCR 

Schema attributes and operation sets for the CCR being registered and whose operations 

are behaviorally equivalent, then such an FCR Schema must be added to the FIOM.  The 

conforming FCR Schema can be added either through addition of a new FE with 

constituent FCR and defining FCR Schema or through generalization or specialization of 

an existing FCR Schema.  When creating a new FCR Schema through generalization of 
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an existing FCR Schema, the interoperability engineer must identify the attributes and 

operations in the selected existing FCR Schema that correspond to the attributes and 

operations of the CCR Schema being registered.  In addition he must verify behavioral 

equivalence between the two schemas’ operations.   

A similar situation exists when creating a corresponding FCR Schema 

through extension of an existing FCR Schema.  The interoperability engineer selects the 

FCR Schema that most closely corresponds to the CCR Schema being registered.  He 

then must provide a mapping of the attributes and operations in the selected existing FCR 

Schema that correspond to the attributes and operations of the CCR Schema being 

registered.  In addition, he must define the FCR Schema attributes and operations for the 

new FEV that correspond to the unmapped CCR Schema attributes and operations using 

information contained in the Federation Ontology. 

The scenarios outlined above present three opportunities for future 

research.  First, investigation of how the correlation methodology defined in 

Section VI.C.2 could be applied to the process of mapping CCR and FCR Schema 

attributes and operations needed for creating an FCR Schema corresponding to the CCR 

Schema being registered.  Second, an investigation of how the correlation methodology 

could be applied to locating information in the Federation Ontology to be used during the 

addition of new attribute and operations to the FCR Schema.  The third opportunity for 

potential research is an investigation of possible algorithms that can help the 

interoperability engineer determine whether corresponding operations between an FCR 

and CCR Schema are behaviorally equivalent. 

5. Extending OOMI IDE to Operate as a Distributed Network 
Application 

Another area for future research would be to develop a session-layer networking 

protocol that allows the OOMI IDE to be deployed as a distributed network application 

accessible via the Internet.  The protocol would serve as an International Standards 

Organization (ISO) Open Systems Interconnection (OSI) session layer protocol that 

would be implemented on top of transport and internet protocols such as TCP/IP [Fei99].  

By extending the OOMI IDE to operate as a distributed network application, the 

 249



advantages gained through the creation of an FIOM for a specified federation of systems 

can be extended to a domain or higher level. 

The key to success in sharing information between independently developed 

systems is to develop a common, flexible framework under which all entities can resolve 

their differences.  The framework should provide a common model of the information to 

be shared in order to minimize the number of translations required to resolve differences 

among systems.  The framework should be flexible in order to allow modification to the 

model without impacting existing applications’ use of the model.  The FIOM provides the 

framework required to allow dissimilar systems to communicate.  In this sense the FIOM 

provides a function similar to that envisioned by the DII/COE XML Namespace Registry 

[DII01].  However, information included with the FIOM provides more that just the name 

and type information provided in the DII/COE XML Namespace Registry for the entities 

shared among systems.  It provides sufficient information for both federation and 

component models of those shared entities to resolve the full spectrum of heterogeneities 

discussed in Section II.A.2. 

Development of a distributed, network-based OOMI IDE application serves as an 

enabler for defining an FIOM across a wider problem environment.  By making the 

OOMI IDE available across the Internet, interoperability engineers from an entire domain 

or domain segment could participate in construction of the Federation Entities to be 

shared among systems.  Using functionality proposed for the Federation Ontology 

Manager discussed in Section V.D.4, an interoperability engineer could select the 

appropriate federation representation for a real-world entity of interest or nominate a 

change to the Federation Ontology if such an entity is not found.  The resulting FIOM 

would provide a common language for communication within the domain or domain 

segment [Law01]. 

6. Resolution of Modeling Differences in Real-Time Systems 

 250

In addition to problems associated with differences in modeling of heterogeneous 

systems in a federation, achieving interoperability among real-time and non-real-time 

systems presents added challenges.  Under the OOMI differences in what characteristics 

heterogeneous systems use to model a real-world entity and differences in how those 

characteristics are represented are resolved.  In addition, real-time systems are concerned 



with coordinating when the information or operations characterizing such real-world 

entities are shared among federation systems.  In order for such real-time systems to 

interoperate, they not only require resolution of modeling differences among systems but 

also require that the information and operations shared among systems be presented in an 

expected sequence and that specified timing constraints be met. 

Systems such as Luqi’s Computer-Aided Prototyping System (CAPS) [LB88] can 

be used to create a system federation that addresses the timing concerns associated with 

real-time systems.  For example, the Prototype System Description Language (PSDL) 

used in CAPS provides mechanisms for specifying timing constraints required for real-

time operation such as Maximum Execution Time (MET), Period, and Finish Within 

(FW) for periodic events and MET, Minimum Calling Period (MCP) and Maximum 

Response Time (MRT) for sporadic events [LBY88].  However, such systems typically 

assume a homogeneous model of the problem environment and do not take modeling 

differences associated with heterogeneous systems into consideration. 

Combining the capabilities of a real-time modeling system such as CAPS and the 

heterogeneous system modeling difference resolution capabilities of the OOMI to support 

the interoperation of real-time and non-real-time systems is identified as an area of 

interest for future research.  Possible alternatives for accomplishing such an objective 

include incorporating timing constraint resolution mechanisms in the OOMI, including 

the heterogeneous system modeling difference resolution capability into a CAPS or 

similar system, or the use of a layered approach whereby modeling difference resolution 

is accomplished using the OOMI and timing constraints are imposed by a CAPS using 

PSDL or a similar real-time control mechanism. 

D. CONCLUDING REMARKS 
In the Chapter I introduction to this dissertation, I presented the following 

hypothesis in response to the question of whether computer aid could be applied to the 

problem of resolving data modeling differences among systems targeted for integration in 

order to enable system interoperability. 

By using a model-based approach, a computer-aided methodology can be 
provided to aid in the resolution of data modeling differences among systems 
targeted for integration in order to enable system interoperability. 
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As evidenced by the Section VIII.B evaluation of the Object-Oriented Method for 

Interoperability (OOMI) presented in this dissertation against the interoperability 

comparison criteria specified in Section II.B, the above hypothesis is affirmed.  The 

OOMI provides such a methodology. 

 252



APPENDIX A:  MODIFYING FIOM TO PROVIDE REQUIRED 
CORRESPONDENCE BETWEEN CCR AND FCR SCHEMAS 

DURING CCR REGISTRATION 
 
 
 

A. ADDING NEW FEDERATION ENTITY (FE) TO FEDERATION 
INTEROPERABILITY OBJECT MODEL (FIOM) 
If during Component Class Representation (CCR) registration there is no 

Federation Entity (FE) in the Federation Interoperability Object Model (FIOM) that 

corresponds to the same real-world entity as the CCR being registered, then the 

interoperability engineer must define a new FE for that real-world entity.  Such could 

potentially be the case when adding the first component system model of a real-world 

entity to the FIOM.  The newly defined FE will include a Federation Entity View (FEV) 

with Federation Class Representation (FCR) Schema containing attribute and operation 

sets that exhibit a one-to-one correspondence with the CCR Schema attribute and 

operation sets.  That is, a function f: FCR  CCR must exist mapping the FCR Schema 

attribute and operation sets (FCR(Αε, Ωε)) to CCR attribute and operation sets 

(CCR(Αε, Ωε)) that is one-to-one and onto and whose operations are behaviorally 

equivalent.  New FCR Syntax and FCR Semantics components will be automatically 

generated from this FCR Schema and included with the new FEV.  The CCR, with 

component CCR Schema, CCR Syntax, and CCR Semantics, will also be included with 

the new FEV and an association established between the new FEV’s FCR Schema and 

the schema for the CCR being registered.  The Interoperability Engineer is responsible 

for definition of the FCR Schema attributes and operations corresponding to the CCR 

Schema attribute and operation sets. 

In order to illustrate the creation of a new FE when adding the first component 

system model of a real-world entity to the FIOM, I will show the addition of the first 

component system model of the example ground combat vehicle real-world entity seen in 

Figure IV-3, System A’s armoredCombatVehicle, to the FIOM.  As indicated by the class 

correlation process and confirmed by the interoperability engineer, initially the FIOM 

will not contain an FE corresponding to the ArmoredCombatVehicle_CCR_Schema 
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depicted in Figure A-1.  Therefore, the interoperability engineer must define a new FE to 

represent the real-world entity modeled by System A’s armoredCombatVehicle. 

 

ArmoredCombatVehicle_CCR_Schema : CCR_Schema

acvType : AcvType
acvPosition : AcvPosition
acvTime : AcvTime
acvRange: AcvRange

getAcvType( )
getAcvPosition( )
getAcvTime( )
getAcvRange( )
setAcvType(AcvType)
setAcvPosition(AcvPosition)
setAcvTime(AcvTime)
setAcvRange(AcvRange)

<<CCR Schema>>

Federation Interoperability Object Model (FIOM)

. . .

.

.

.

groundWeaponSystem: FE

groundWeaponSystem_View1
groundWeaponSystem_View2
   ...
groundWeaponSystem_ViewJ

<<FE>>

enemyOrderOfBattle : FE

enemyOrderOfBattle_View1
enemyOrderOfBattle_View2
   ...
enemyOrderOfBattle_ViewK

operation(arg list):return type

<<FE>>

artillery : FE

artillery_View1
artillery_View2
   ...
artillery_ViewL

<<FE>>

federationEntityZ : FE

federationEntityZ_View1
federationEntityZ_View2
   ...
federationEntityZ_ViewX

<<FE>>

* 1

 
Figure A-1. No FE in FIOM Corresponding to CCR Being Registered 

 
As part of this FE, the interoperability engineer must define an FEV that captures 

the perspective of the real-world entity depicted by System A’s armoredCombatVehicle 

model.  As discussed in Section IV.C.1.b(2), System A’s perspective of the real-world 

entity is defined by the attribute and operation sets contained in its ArmoredCombat-

Vehicle_CCR_Schema.  The interoperability engineer will define the FCR Schema such 

that it contains attribute and operation sets that exhibit a one-to-one correspondence with 

the attribute and operation sets of the System A ArmoredCombatVehicle_CCR_Schema 

and whose operations are behaviorally equivalent.  In addition to the ArmoredCombat-

Vehicle_CCR_Schema, this FEV will include schemas from all models of the real-world 
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entity having the same view as System A’s ArmoredCombatVehicle_CCR_Schema.  

Although the component and federation models included with an FEV share the same 

view of the real-world entity, each may represent their defining attribute and operation 

sets differently.   

Names used for the FCR Schema, as well as names and representations used in its 

attribute and operation sets, will be taken from the Federation Ontology as discussed in 

Section V.D.2.a(1).  Similarly, the FE and FEV names will be taken from the Federation 

Ontology and will correspond with the names used for the FCR Schema.  For our 

example, the new FE will be named groundCombatVehicle.  The new FEV that has the 

same view of the real-world entity as the System A ArmoredCombat-

Vehicle_CCR_Schema will be named groundCombatVehicle_View1.  Lastly, the 

corresponding FCR and FCR Schema will be named groundCombatVehicle_View1_FCR 

and GroundCombatVehicle_View1_FCR_Schema, respectively.  Figure A-2 illustrates 

this new FE with FEV containing both the FCR and CCR with their constituent Schemas, 

Syntax, and Semantics components.  An association between the included FCR and CCR 

Schemas is also included to indicate the one-to-one correspondence between their 

attribute and operation sets. 

B. ADDING COMPONENT CLASS REPRESENTATION (CCR) TO 
EXISTING FEDERATION ENTITY (FE) 
If an FE exists in the FIOM for the real-world entity modeled by the CCR being 

registered, then the interoperability engineer must either find an existing FEV defined for 

the FE that has the same view of the real-world entity as the CCR, or must add such an 

FEV to the FE.  The views (FEVs) of the FE are examined to determine the relationship 

between the Schema properties of the CCR being registered and those of the FCR defined 

for each of the FE’s views.  The correlation methodology described in Section VI.B can 

be used to assist the Interoperability Engineer in making this determination.  This 

assistance is limited in the initial prototype OOMI IDE to helping find the FEV whose 

FCR Schema provides the closest match to the CCR Schema being registered; however, 

expansion of this assistance to identify the relationships between individual attributes and 

operations has been identified as an area for future research. 
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groundCombatVehicle

groundCombatVehicle_View1_FCR

armoredCombatVehicle_CCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType( )
getPosition( )
getTime( )
getRange( )
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

ArmoredCombatVehicle_CCR_Schema : CCR_Schema
acvType : AcvType
acvPosition : AcvPosition
acvTime : AcvTime
acvRange: AcvRange

getAcvType( )
getAcvPosition( )
getAcvTime( )
getAcvRange( )
setAcvType(AcvType)
setAcvPosition(AcvPosition)
setAcvTime(AcvTime)
setAcvRange(AcvRange)

<<CCR Schema>>

1

1

GroundCombatVehicle_View1_FCR_Syntax

GroundCombatVehicle_View1_FCR_Semantics

1

1

1

ArmoredCombatVehicle_CCR_Syntax

ArmoredCombatVehicle_CCR_Semantics

1
1

1

 
Figure A-2. New FE Defined With FEV Having Same Perspective of Real-World 

Entity as CCR Being Registered 

 
1. Adding CCR to Existing Federation Entity View (FEV) 
If there is an existing FEV defined for the FE whose FCR Schema attribute and 

operation sets exhibit a one-to-one correspondence with the Schema attribute and 

operation sets of the CCR being registered, then the CCR, with component CCR Schema, 

CCR Syntax, and CCR Semantics, is included with the FEV.  Such would be the case if 

there exists a function f: CCR  FCR mapping the CCR Schema attribute and operation 
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sets (CCR(Αε, Ωε)) to FCR Schema attribute and operation sets (FCR(Αε, Ωε)) that is 

one-to-one and onto and whose operations are behaviorally equivalent.  Automation of 

the process for determining behavioral equivalence has been identified as an area for 

further research. 

Continuing the registration example begun in Appendix A Section A, suppose the 

attributes and operations for System B’s MechanizedCombatVehicle_CCR_Schema 

corresponded to the attributes and operations of the GroundCombat-

Vehicle_View1_FCR_Schema as depicted in Figure A-3 below.  That is, there is a 

function f1: CCR  FCR that can be defined mapping MechanizedCombat-

Vehicle_CCR_Schema attribute and operation sets to GroundCombat-

Vehicle_View1_FCR_Schema attribute and operation sets that is one-to-one and onto.  In 

addition, suppose their operations are behaviorally equivalent.  In this case System B’s 

mechanizedCombatVehicle_CCR, with constituent components MechanizedCombat-

Vehicle_CCR_Schema, MechanizedCombatVehicle_CCR_Syntax, and Mechanized-

CombatVehicle_CCR_Semantics, would be included with groundCombatVehicle_View1 

and associations established between the MechanizedCombatVehicle_CCR_Schema and 

the GroundCombatVehicle_View1_FCR_Schema as shown in Figure A-4. 

 

MechanizedCombatVehicle_CCR_Schema : CCR_Schema

mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius: McvRadius

getMcvType( )
getMcvLocation( )
getMcvTime( )
getMcvRadius( )
setMcvType(McvType)
setMcvLocation(McvLocation)
setMcvTime(McvTime)
setMcvRadius(McvRadius)

<<CCR Schema>>

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType( )
getPosition( )
getTime( )
getRange( )
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

 

Figure A-3. One-To-One Correspondence Between CCR and FCR Schema Properties 

 
2. Adding New View to FE 
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If the FE does not include a view whose FCR Schema attribute and operation sets 

have a one-to-one correspondence with the attribute and operation sets of the CCR 

Schema being registered and whose operation sets are behaviorally equivalent, then a 

new FEV with FCR Schema meeting these criteria must be defined for the FE.  The new  



groundCombatVehicle

groundCombatVehicle_View1_FCR

armoredCombatVehicle_CCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType( )
getPosition( )
getTime( )
getRange( )
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

ArmoredCombatVehicle_CCR_Schema : CCR_Schema
acvType : AcvType
acvPosition : AcvPosition
acvTime : AcvTime
acvRange: AcvRange

getAcvType( )
getAcvPosition( )
getAcvTime( )
getAcvRange( )
setAcvType(AcvType)
setAcvPosition(AcvPosition)
setAcvTime(AcvTime)
setAcvRange(AcvRange)

<<CCR Schema>>

1

1

GroundCombatVehicle_View1_FCR_Syntax

GroundCombatVehicle_View1_FCR_Semantics

1

1

1

ArmoredCombatVehicle_CCR_Syntax

ArmoredCombatVehicle_CCR_Semantics

1
1

1

mechanizedCombatVehicle_CCR

<<CCR Schema>>
1

MechanizedCombatVehicle_CCR_Syntax

MechanizedCombatVehicle_CCR_Semantics

1
1

1

MechanizedCombatVehicle_CCR_Schema : CCR_Schema
mcvType : McvType
mcvLocation : McvLocation
mcvTime : McvTime
mcvRadius: McvRadius

getMcvType( )
getMcvLocation( )
getMcvTime( )
getMcvRadius( )
setMcvType(McvType)
setMcvLocation(McvLocation)
setMcvTime(McvTime)
setMcvRadius(McvRadius)
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Figure A-4. CCR Added to Federation Entity View Exhibiting One-To-One 
Correspondence Between CCR and FCR Schema Properties 



FEV will be derived from an existing view of the FE defined for the real-world entity 

modeled by the CCR being registered.  The new FEV’s defining FCR Schema will be 

constructed either through specialization or generalization of the existing view’s FCR 

Schema.  The choice of FCR Schema to specialize or generalize will be determined by 

the interoperability engineer, but the FCR Schema having the closest correspondence 

with the attribute and operation sets of the CCR Schema being registered should be 

selected.  The correlation methodology described in Section VI.B can be used to assist 

the Interoperability Engineer in making this decision.  Determination of whether the new 

FEV’s FCR Schema will be defined by specialization or generalization of the selected 

FEV’s FCR Schema will be dependent upon the relationship between CCR and FCR 

Schema attribute and operation sets.  Assistance in establishing the relationships between 

individual attributes and operations has been identified as an area for future research. 

a. CCR Schema Properties Subset of FCR Schema Properties 
If, for the FEV selected, there is a function f: CCR  FCR mapping the 

CCR Schema attribute and operation sets (CCR(Αε, Ωε)) to the FEV’s FCR Schema 

attribute and operation sets (FCR(Αε, Ωε)) that is one-to-one but not onto, then the 

interoperability engineer should define a new FEV with FCR Schema that generalizes the 

selected existing FEV’s FCR Schema.  Attribute and operation sets for the new FEV’s 

FCR Schema should be created such that they exhibit a one-to-one correspondence with 

the attribute and operation sets of the CCR Schema being registered.  In addition, in order 

to prevent difficulties associated with multiple inheritance, the selected FCR Schema 

should not already have a supertype in the FCR Schema Inheritance Hierarchy.  If the 

selected FCR Schema does already extend another FCR Schema, another FEV should be 

selected as the basis for registering the CCR. 

For example, in Figure A-5 the interoperability engineer selects ground-

CombatVehicle_View1 as the view whose FCR Schema has the closest correspondence 

with the attribute and operation sets of the CCR Schema being registered, Armored-

MilitaryVehicle_CCR_Schema.  For these schemas, a one-to-one function 

f2: CCR  FCR can be defined mapping ArmoredMilitaryVehicle_CCR_Schema 

attributes designation, position, and time and the related get and set operations for these 
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attributes to GroundCombatVehicle_View1_FCR_Schema attributes type, position and 

time and corresponding get and set operations as depicted.  However, f2: CCR  FCR is 

not onto since GroundCombatVehicle_View1_FCR_Schema attribute range and related 

get and set operations do not have corresponding elements in the domain schema, 

ArmoredMilitaryVehicle_CCR_Schema.  Therefore the interoperability engineer should 

define a new FEV with FCR Schema that generalizes GroundCombat-

Vehicle_View1_FCR_Schema. 

 

ArmoredMilitaryVehicle_CCR_Schema : CCR_Schema

designation : Designation
position : Position
time : Time

getDesignation( )
getPosition( )
getTime( )
setDesignation(Designation)
setPosition(Position)
setTime(Time)

<<CCR Schema>>

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time
range : Range

getType( )
getPosition( )
getTime( )
getRange( )
setType(Type)
setPosition(Position)
setTime(Time)
setRange(Range)

<<FCR Schema>>

 

Figure A-5. CCR Schema Properties Subset of FCR Schema Properties 
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The new FEV’s FCR Schema will contain attributes and operations from 

the selected existing FEV’s FCR Schema that correspond to the attributes and operations 

contained in the CCR Schema being registered.  This will provide a one-to-one 

correspondence between the attribute and operation sets of the CCR Schema being 

registered and the new FEV’s FCR Schema.  The selected existing FEV’s FCR Schema 

will be modified such that it inherits the attributes and operations from the newly created 

FEV’s FCR Schema and contains the remaining attributes and operations originally part 

of the existing FEV’s FCR Schema that are not inherited from the new supertype FCR 

Schema.  New FCR Syntax and Semantics components will be generated from the new 

supertype FCR Schema.  FCR Syntax and Semantics components for the existing FCR 

are unaffected.  The CCR, with component CCR Schema, CCR Syntax, and CCR 

Semantics, will then be included with the new FEV and an association established 

between the new FEV’s FCR Schema and the CCR Schema being registered.  Assistance 

will be provided by the Integrated Development Environment (IDE) in creating the new 

view with component FCR and FCR Schema that generalizes the selected existing FEV’s 



FCR Schema; however the interoperability engineer must identify the FCR Schema 

attributes and operations in the selected existing FEV that correspond to the CCR Schema 

attributes and operations. 

From the example FCR Schema and CCR Schema correspondence shown 

in Figure A-5, a new FEV, groundCombatVehicle_View2, is defined from the view 

selected by the interoperability engineer, groundCombatVehicle_View1, and included 

with the groundCombatVehicle FE. As seen in Figure A-6, GroundCombat-

Vehicle_View2_FCR_Schema generalizes GroundCombatVehicle_View1_FCR_Schema 

and contains attributes type, position, and time and their related get and set operations 

from GroundCombatVehicle_View1_FCR_Schema.  These are the attributes and 

operations from GroundCombatVehicle_View1_FCR_Schema that correspond to the 

attributes and operations contained in ArmoredMilitaryVehicle_CCR_Schema.  This 

provides the required one-to-one correspondence between the attribute and operation sets 

of the CCR Schema being registered and the corresponding FEV’s FCR Schema. 

 

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType( )
getPosition( )
getTime( )
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

 
Figure A-6. Generalized FCR Schema Added to FEV 

As shown in Figure A-7, groundCombatVehicle_View2_FCR, with 

constituent FCR Schema, Syntax, and Semantics components, is included with the new 

groundCombatVehicle_View2 FEV.  Subsequently, armoredMilitaryVehicle_CCR, with 

constituent CCR Schema, Syntax, and Semantics components, is then included with 

groundCombatVehicle_View2 and associations established between the CCR Schema 

and FCR Schema for future reference by the translator.  Syntax and semantics 
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components for the FCR and CCR as well as previously registered CCRs for ground-

CombatVehicle_View1 have been omitted to enhance readability. 
 

groundCombatVehicle

groundCombatVehicle_View1_FCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

groundCombatVehicle_View2_FCR

armoredMilitaryVehicle_CCR

groundCombatVehicle_View2

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType( )
getPosition( )
getTime( )
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

<<CCR Schema>>

1

1
ArmoredMilitaryVehicle_CCR_Schema : CCR_Schema

designation : Designation
position : Position
time : Time

getDesignation( )
getPosition( )
getTime( )
setDesignation(Designation)
setPosition(Position)
setTime(Time)

 

Figure A-7. FEV Containing Generalized FCR Schema Defined for FE 

 
b. FCR Schema Properties Subset of CCR Schema Properties 
If, for the FEV selected, there is a function f: FCR  CCR mapping the 

FEV’s FCR Schema attribute and operation sets (FCR(Αε, Ωε)) to CCR Schema attribute 

and operation sets (CCR(Αε, Ωε)) that is one-to-one but not onto, then the interoper-

ability engineer should define a new FEV whose FCR Schema specializes the selected 

existing FEV’s FCR Schema.  Attribute and operation sets for the new FEV’s FCR 
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Schema should be created such that they exhibit a one-to-one correspondence with the 

attribute and operation sets of the CCR Schema being registered.  For example, in Figure 

A-8 the interoperability engineer selects groundCombatVehicle_View2 as the view 

whose FCR Schema has the closest correspondence with the attributes and operations of 

the next CCR Schema being registered, System D’s ArmoredFighting-

Vehicle_CCR_Schema.  For these schemas, a one-to-one function f3: FCR  CCR can 

be defined mapping GroundCombatVehicle_View2_FCR_Schema attributes type, 

position, and time, and related get and set operations to ArmoredFighting-

Vehicle_CCR_Schema attributes afvClassification, afvLocation, and afvObsTime and its 

related get and set operations.  However, f3: FCR  CCR is not onto since Armored-

FightingVehicle_CCR_Schema attribute afvStatus and operations getAfvStatus( ) and 

setAfvStatus(AfvStatus) do not have corresponding elements in the domain schema, 

GroundCombatVehicle_View2_FCR_Schema.  Therefore the interoperability engineer 

should define a new FEV with FCR Schema that extends GroundCombat-

Vehicle_View2_FCR_Schema and contains attribute and operation sets (FCR(Αε, Ωε)) 

that exhibit a one-to-one correspondence with ArmoredFightingVehicle_CCR_Schema 

attribute and operation sets and whose operations are behaviorally equivalent to the CCR 

Schema’s operations. 
 

ArmoredFightingVehicle_CCR_Schema : CCR_Schema

afvClassification : AfvClassification
afvLocation : AfvLocation
afvObsTime : AfvObsTime
afvStatus : AfvStatus

getAfvClassification( )
getAfvLocation( )
getAfvObsTime( )
getAfvStatus( )
setAfvClassification(AfvClassification)
setAfvLocation(AfvLocation)
setAfvObsTime(AfvObsTime)
setAfvStatus(AfvStatus)

<<CCR Schema>>

GroundCombatVehicle_View2_FCR_Schema: FCR_Schema

type
position
time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

 

Figure A-8. FCR Schema Properties Subset of CCR Schema Properties 
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The new FEV’s FCR Schema will inherit the attributes and operations 

defined for the existing FEV’s FCR Schema being extended.  The new FEV’s FCR 

Schema will also include additional attributes and operations corresponding to the CCR 

Schema attributes and operations that are not represented in the existing FEV’s FCR 



Schema.  This will provide a one-to-one correspondence between the attribute and 

operation sets of the new FEV’s FCR Schema and the CCR Schema being registered.  

New FCR Syntax and FCR Semantics components that include syntactic and semantic 

information for the attributes and operations inherited from the existing FCR Schema will 

be generated from the new FCR Schema component. The CCR, with component CCR 

Schema, CCR Syntax, and CCR Semantics, will then be included with the new FEV and 

an association established between the new FEV’s FCR Schema and the CCR Schema 

being registered.  Assistance will be provided by the IDE in creating the new FEV with 

component FCR and FCR Schema that extends the selected existing FEV’s FCR Schema; 

however definition of FCR Schema attributes and operations for the new FEV that 

correspond to the CCR Schema attributes and operations must be done by the 

interoperability engineer using information contained in the Federation Ontology. 

Continuing our example from the FCR Schema and CCR Schema 

correspondence shown in Figure A-8, a new FEV, groundCombatVehicle_View3, is 

defined from the view selected by the interoperability engineer, groundCombat-

Vehicle_View2, and included with the groundCombatVehicle FE.  As seen in Figure 

A-9, GroundCombatVehicle_View3_FCR_Schema extends GroundCombat-

Vehicle_View2_FCR_Schema.  It includes additional properties, attribute status and 

operations getStatus( ) and setStatus(Status), which correspond to ArmoredFighting 

 

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType( )
getPosition( )
getTime( )
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR_Schema

status : Status

getStatus( )
setStatus(Status)

<<FCR Schema>>

 
Figure A-9. Specialized FCR Schema Added to FEV 
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Vehicle_CCR_Schema attribute afvStatus and operations getAfvStatus( ) and 

setAfvStatus(AfvStatus), respectively.  This provides the required one-to-one 

correspondence between the attribute and operation sets of ArmoredFighting-

Vehicle_CCR_Schema and GroundCombatVehicle_View3_FCR_Schema. 

As shown in Figure A-10, groundCombatVehicle_View3_FCR, with 

constituent FCR Schema, Syntax, and Semantics, is included with the groundCombat-

Vehicle_View3 FEV.  Subsequently, armoredFightingVehicle_CCR, with constituent 

CCR Schema, Syntax, and Semantics components, is then included with groundCombat-

Vehicle_View3 and associations established between the CCR Schema and FCR Schema 

for future reference by the translator.  Syntax and semantics components for the FCRs 

and CCRs as well as CCRs for previously registered components have been omitted to 

enhance readability. 

 
groundCombatVehicle

groundCombatVehicle_View1_FCR

groundCombatVehicle_View1

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

groundCombatVehicle_View2_FCR
groundCombatVehicle_View2

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type
position : Position
time : Time

getType( )
getPosition( )
getTime( )
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

groundCombatVehicle_View3_FCR

armoredFightingVehicle_CCR

groundCombatVehicle_View3

GroundCombatVehicle_View3_FCR_Schema : FCR_Schema

status : Status

getStatus( )
setStatus(Status)

<<FCR Schema>>

<<CCR Schema>>

1

1 ArmoredFightingVehicle_CCR_Schema : CCR_Schema

afvClassification : AfvClassification
afvLocation : AfvLocation
afvObsTime : AfvObsTime
afvStatus : AfvStatus

getAfvClassification( )
getAfvLocation( )
getAfvObsTime( )
getAfvStatus( )
setAfvClassification(AfvClassification)
setAfvLocation(AfvLocation)
setAfvObsTime(AfvObsTime)
setAfvStatus(AfvStatus)

 
Figure A-10. FEV Containing Specialized FCR Schema Added to FE 
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c. CCR and FCR Schema Have Properties in Common, But No 

Subset Relation Exists. 
Another possibility is for the CCR Schema and the selected FEV’s FCR 

Schema to have corresponding attributes or operations, but that no function 

f: FCR  CCR or g: CCR  FCR mapping FCR Schema and CCR Schema attribute and 

operation sets can be defined.  In this case we can define a function 

f: subset(CCR)  subset(FCR) mapping a subset of the CCR Schema attributes and 

operations to a corresponding subset of the FCR Schema attributes and operations that is 

one-to-one and onto.  For this situation the interoperability engineer should define a new 

FEV with FCR Schema that generalizes the selected existing FEV’s FCR Schema, with 

the generalized FCR Schema containing attributes and operations from the existing 

FEV’s FCR Schema that have corresponding attributes and operations in the CCR 

Schema being registered.  In addition, a second new FEV should be defined with FCR 

Schema that specializes the first new FEV’s FCR Schema and contains such additional 

attributes and operations required to provide a one-to-one correspondence with the 

attribute and operation sets of the CCR Schema being registered.  Again, if the selected 

FEV’s FCR Schema already extends another FCR Schema, a different FEV should be 

selected as the basis for registering the CCR in order to prevent problems associated with 

multiple inheritance. 

To illustrate this case, I add an additional component system model of the 

ground combat vehicle real-world entity to those introduced in Figure IV-3.  This model, 

from a component System E, names our real-world entity Tank and includes attributes 

position, observationTime and radiusOfAction and includes related get and set operations 

to characterize our ground combat vehicle from its perspective.  In registering the CCR 

Schema for the System E Tank, the interoperability engineer selects groundCombat-

Vehicle_View2 as the view whose FCR Schema has the closest correspondence to the 

attributes and operations of the Tank_CCR_Schema, as seen in Figure A-11.  For these 

schemas, a one-to-one, onto function f4: subset(CCR)  subset(FCR) can be defined 

mapping Tank_CCR_Schema attributes position and observationTime and their related 
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get and set operations to GroundCombatVehicle_View2_FCR_Schema attributes position 

and time and related get and set operations as depicted. 

 

Tank_CCR_Schema : CCR_Schema

position : Position
observationTime : ObservationTime
radiusOfAction : RadiusOfAction

getPosition( )
getObservationTime( )
getRadiusOfAction( )
setPosition(Position)
setObservationTime(ObservationTime)
setRadiusOfAction(RadiusOfAction)

<<CCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type
position
time

getType()
getPosition()
getTime()
setType(Type)
setPosition(Position)
setTime(Time)

<<FCR Schema>>

 

Figure A-11. CCR and FCR Schema Have Properties in Common, But No Subset 
Relation Exists 

 
A new FEV whose FCR Schema generalizes the selected existing FEV’s 

FCR Schema, containing the subset of the attributes and operations from the existing 

FEV’s FCR Schema that corresponds to those of the CCR Schema being registered, is 

defined by the interoperability engineer.  The selected existing FEV’s FCR Schema will 

be modified such that it inherits the attributes and operations from the newly defined 

FEV’s FCR Schema and contains additional attributes and operations originally part of 

the selected existing FEV’s FCR Schema that are not inherited from the new FEV’s FCR 

Schema.  New FCR Syntax and FCR Semantics components will be generated from the 

new FEV’s FCR Schema and included with the newly defined FEV.  In addition, a 

second new FEV whose FCR Schema attribute and operation sets exhibit a one-to-one 

correspondence with the CCR Schema attribute and operation sets must be defined for 

the FE.  This second new FEV’s FCR Schema will extend the first new FEV’s 

generalized FCR Schema.  The second new FEV’s specialized FCR Schema will inherit 

the attributes and operations defined for the first new FEV’s generalized FCR Schema.  

The second new FEV’s specialized FCR Schema will also include additional attributes 

and operations required to provide a one-to-one correspondence with the attribute and 

operation sets of the CCR Schema being registered. 

New FCR Syntax and FCR Semantics components will be generated from 

this second new FEV’s specialized FCR Schema and included with the FEV.  The CCR, 

with component CCR Schema, CCR Syntax, and CCR Semantics, will then be included 
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with the second new FEV and an association established between the second new FEV’s 

FCR Schema and the CCR Schema being registered.  Assistance will be provided by the 

IDE in defining the new FEV with component FCR whose FCR Schema generalizes the 

selected existing FEV’s FCR Schema.  Also, assistance will be provided by the IDE in 

defining the second new FEV with component FCR whose FCR Schema specializes the 

first new FEV’s FCR Schema.  However, the interoperability engineer is responsible for 

identifying the FCR Schema attributes and operations in the selected existing FEV that 

correspond to the CCR Schema attributes and operations and for defining FCR Schema 

attributes and operations for the second new FEV’s specialized FCR Schema that 

correspond to the CCR Schema attributes and operations that do not have a 

corresponding attribute or operation in the first new FEV’s FCR Schema. 

From the example FCR Schema and CCR Schema correspondence shown 

in Figure A-11, a new FEV, groundCombatVehicle_View4, is defined from the FEV 

selected by the interoperability engineer, groundCombatVehicle_View2, and included 

with the groundCombatVehicle FE.  As seen in Figure A-12, GroundCombat-

Vehicle_View4_FCR_Schema generalizes GroundCombatVehicle_View2_FCR_Schema 

and contains attributes position and time with related get and set operations from the 

GroundCombatVehicle_View2_FCR_Schema.  These are the attributes and operations  

 

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type

getType( )
setType(Type)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR Schema

status : Status

getStatus( )
setStatus(Status)

<<FCR Schema>>

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition( )
getTime( )
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View5_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

 
Figure A-12. Sibling to Existing FCR Schema Added to FEV 
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from GroundCombatVehicle_View2_FCR_Schema that have a corresponding attribute or 

operation in Tank_CCR_Schema.  In addition, GroundCombat-

Vehicle_View5_FCR_Schema extends GroundCombatVehicle_View4_FCR_Schema.  It 

also includes additional properties, attribute range and operations getRange( ) and 

setRange(Range), which correspond to Tank_CCR_Schema attribute radiusOfAction and 

operations getRadiusOfAction( ) and setRadiusOfAction(RadiusOfAction), respectively.  

This provides the required one-to-one correspondence between the attributes and 

operations of the CCR Schema being registered, Tank_CCR_Schema, and the newly 

added FEV’s FCR Schema, GroundCombatVehicle_View5_FCR_Schema. 

As seen in Figure A-13, groundCombatVehicle_View4_FCR and ground-

CombatVehicle_View5_FCR, with constituent FCR Schema, FCR Syntax, and FCR 

Semantics components are included with groundCombatVehicle_View4 and ground-

CombatVehicle_View5, respectively.  Subsequently, System E Tank_CCR, with  

 
groundCombatVehicle

groundCombatVehicle_View2_FCR

groundCombatVehicle_View2

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type

getType( )
setType(Type)

<<FCR Schema>>

groundCombatVehicle_View4_FCR
groundCombatVehicle_View4

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition( )
getTime( )
setPosition(Position)
setTime(Time)

<<FCR Schema>>

groundCombatVehicle_View5_FCR

Tank_CCR

groundCombatVehicle_View5

GroundCombatVehicle_View5_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

<<CCR Schema>>

1

1 Tank_CCR_Schema : CCR_Schema

position : Position
observationTime : ObservationTime
radiusOfAction : RadiusOfAction

getPosition( )
getObservationTime( )
getRadiusOfAction( )
setPosition(Position)
setObservationTime(ObservationTime)
setRadiusOfAction(RadiusOfAction)

 

Figure A-13. FEV With FCR Schema Sibling to Existing FCR Schema Added to FE 
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constituent CCR Schema, CCR Syntax, and CCR Semantics components, is then 

included with groundCombatVehicle_View5 and associations established between the 

CCR Schema and FCR Schema for future reference by the translator.  Again, syntax and 

semantics components for both the FCR and CCR have been omitted to enhance 

readability.  Additionally, all FEVs whose FCR Schemas are descendants of Ground-

CombatVehicle_View2_FCR_Schema have been omitted from the figure. 

d. No Correspondence Between CCR and FCR Schemas 
A final possible relationship between the CCR being registered and FIOM 

FEs is that an FE exists for the real-world entity modeled by the CCR being registered, 

but no correspondence can be found in the FE between the CCR Schema’s attribute and 

operation sets and those of an existing FEV’s FCR Schema.  In this case the 

interoperability engineer must define a new FEV for the FE whose defining FCR Schema 

attribute and operation sets provide a one-to-one correspondence with the CCR Schema 

attribute and operation sets.  While the newly defined FEV’s FCR Schema has a totally 

different perspective of the real-world entity being modeled than do the other FCR 

Schemas for the FE (as determined by the lack of correspondence between their attribute 

and operation sets), it does model the same real-world entity captured by the other FEVs.  

Therefore, the relationship between this new FEV’s FCR Schema and existing FCR 

Schemas for other FEVs in the FE should be reflected in the FE’s FCR Schema 

Inheritance Hierarchy for future reference by the translator (discussed in Chapter VII).  

This is accomplished by including a new FEV whose FCR Schema will serve as the new 

root of the existing FCR Schema Inheritance Hierarchy for the FE.  This new root FCR 

Schema will then be used to relate the existing FEVs to the new FEV whose FCR 

Schema corresponds to the schema of the CCR being registered. 
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This new FCR Schema will generalize the existing FCR Schema 

Inheritance Hierarchy root FCR Schema and will serve as the new root for the inheritance 

hierarchy.  The new root FCR Schema will not contain any attributes or operations.  In 

addition, a second new FEV should be defined whose FCR Schema specializes the first 

new FEV’s FCR Schema and whose FCR Schema attribute and operation sets provide a 

one-to-one correspondence with the CCR Schema attribute and operation sets of the CCR 

being registered.  Although it is considered unlikely in practice that two models of the 



same real-world entity would not have any properties in common (otherwise they would 

not be able to interoperate), it is feasible that this situation could occur as an interim step 

during bottom-up construction of the FCR Schema Inheritance Hierarchy.  In this case, 

the process described above is necessary in order to preserve connectivity between FCR 

Schema nodes comprising the FCR Schema Inheritance Hierarchy for later use by the 

translator. 

To illustrate the case described above, I add yet another component system 

model of the ground combat vehicle real-world entity to those introduced in Figure IV-3 

to my example.  Instead of the command-and-control related systems introduced earlier, 

this last system, System F, is a logistics management system and requires information 

related to the provisioning of the modeled ground combat vehicle.  As seen in Figure 

A-14, System F’s model of the real-world entity is named MainBattleTank and includes 

attributes fuelType and ammoType for tracking the vehicle’s provisions.  The defining 

MainBattleTank_CCR_Schema also includes operations for getting and setting the 

provision type values. 

Using the correlation software discussed in Chapter VI above to search the 

FIOM for federation entities related to the component system model being registered, the 

interoperability engineer discovers that the existing groundCombatVehicle FE provides a 

model of the same real-world entity as the MainBattleTank_CCR_Schema being 

registered.  However, as depicted in Figure A-14 it is discovered that none of the views 

currently defined for the FE contain an FCR Schema that has any attributes or operations 

in common with the MainBattleTank_CCR_Schema’s attributes or operations.  

In this case, the interoperability engineer defines a new FEV whose FCR 

Schema generalizes the existing root FCR Schema in the FE’s FCR Schema Inheritance 

Hierarchy.  This FCR Schema will function as the new root FCR Schema for the 

inheritance hierarchy and will contain no attributes or operations.  The previously 

existing root FCR Schema will extend this newly created FCR Schema and will 

otherwise be unchanged.  In addition, a second new FEV with FCR Schema whose 

attribute and operation sets exhibit a one-to-one correspondence with the CCR Schema 

attribute and operation sets must be defined for the FE.  This second new FEV’s FCR 
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Schema will extend the new root FCR Schema.  The second new FEV’s specialized FCR 

Schema will inherit the attributes and operations defined for the new root FCR Schema.  

The second new FEV’s specialized FCR Schema will also include additional attributes 

and operations required to provide a one-to-one correspondence with the attribute and 

operation sets of the CCR Schema from the CCR being registered. 

 

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type

getType( )
setType(Type)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR Schema

status : Status

getStatus( )
setStatus(Status)

<<FCR Schema>>

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition( )
getTime( )
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View5_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

MainBattleTank_CCR_Schema : CCR_Schema

fuelType : FuelType
ammoType : AmmoType

getFuelType( )
getAmmoType( )
setfuelType(FuelType)
setammoType(AmmoType)

<<CCR Schema>>

 

Figure A-14. No Correspondence Between CCR Schema Being Registered and Existing 
FCR Schemas in FE 

 
New FCR Syntax and FCR Semantics components will be generated from 

this second new specialized FCR Schema and included with the FEV.  The CCR, with 

component CCR Schema, CCR Syntax, and CCR Semantics, will then be included with 

the second new FEV and an association established between this FEV’s FCR Schema and 

the CCR Schema.  Assistance will be provided by the IDE in defining the new FEV 

whose component FCR Schema serves as the new FCR Schema Inheritance Hierarchy 

root and generalizes the previously existing root FCR Schema.  Also, assistance will be 
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provided by the IDE in defining the second new FEV whose component FCR Schema 

specializes the new root FCR Schema.  However, definition of the additional FCR 

Schema attributes and operations for the second new specialized FCR Schema that 

correspond to the CCR Schema attribute and operation sets must be done by the 

interoperability engineer. 

For the example FCR Schema and CCR Schema correspondence shown in 

Figure A-14, a new FEV, groundCombatVehicle_View6, is defined from the view 

containing the previous existing root FCR Schema, groundCombatVehicle_View4, and 

included with the groundCombatVehicle FE.  As seen in Figure A-15, GroundCombat-

Vehicle_View6_FCR_Schema generalizes GroundCombatVehicle_View4_FCR_Schema 

and contains no attributes or operations.  As a result, GroundCombat-

Vehicle_View6_FCR_Schema becomes the new root for the FCR Schema Inheritance 

Hierarchy, leaving the previous root, GroundCombatVehicle_View4_FCR_Schema, 

otherwise unchanged.  In addition, GroundCombatVehicle_View7_FCR_Schema extends 

GroundCombatVehicle_View6_FCR_Schema and includes attributes fuelType and 

ammoType and their related get and set operations corresponding to MainBattle 

 

GroundCombatVehicle_View1_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

GroundCombatVehicle_View2_FCR_Schema : FCR_Schema

type : Type

getType( )
setType(Type)

<<FCR Schema>>

GroundCombatVehicle_View3_FCR_Schema : FCR Schema

status : Status

getStatus( )
setStatus(Status)

<<FCR Schema>>

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition( )
getTime( )
setPosition(Position)
setTime(Time)

<<FCR Schema>>

GroundCombatVehicle_View5_FCR_Schema : FCR_Schema

range : Range

getRange( )
setRange(Range)

<<FCR Schema>>

<<FCR Schema>>

GroundCombatVehicle_View7_FCR_Schema : FCR_Schema

fuelType : FuelType
ammoType : AmmoType

getFuelType( )
getAmmoType( )
setfuelType(FuelType)
setammoType(AmmoType)

<<FCR Schema>>

GroundCombatVehicle_View6_FCR_Schema : FCR_Schema

 
Figure A-15. New Root FCR Schema With Child FCR Schema Corresponding to CCR 

Schema Being Registered Included with FEV 
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Tank_CCR_Schema attributes fuelType and ammoType and their related get and set 

operations, respectively.  This provides the required one-to-one correspondence between 

the attribute and operation sets of the CCR Schema being registered, MainBattle-

Tank_CCR_Schema, and the newly defined FEV’s FCR Schema, GroundCombat-

Vehicle_View7_FCR_Schema. 

As seen in Figure A-16, groundCombatVehicle_View6_FCR and ground-

CombatVehicle_View7_FCR, with constituent FCR Schema, FCR Syntax, and FCR 

Semantics components are included with groundCombatVehicle_View6 and ground-

CombatVehicle_View7, respectively.  Subsequently, mainBattleTank CCR, with  

 
groundCombatVehicle

groundCombatVehicle_View4_FCR

groundCombatVehicle_View4

<<FCR Schema>>

groundCombatVehicle_View6_FCR
groundCombatVehicle_View6

GroundCombatVehicle_View6_FCR_Schema : FCR_Schema

<<FCR Schema>>

groundCombatVehicle_View7_FCR

Tank_CCR

groundCombatVehicle_View7

<<FCR Schema>>

<<CCR Schema>>

1

1

GroundCombatVehicle_View4_FCR_Schema : FCR_Schema

position : Position
time : Time

getPosition( )
getTime( )
setPosition(Position)
setTime(Time)

MainBattleTank_CCR_Schema : CCR_Schema

fuelType : FuelType
ammoType : AmmoType

getFuelType( )
getAmmoType( )
setfuelType(FuelType)
setammoType(AmmoType)

GroundCombatVehicle_View7_FCR_Schema : FCR_Schema

fuelType : FuelType
ammoType : AmmoType

getFuelType( )
getAmmoType( )
setfuelType(FuelType)
setammoType(AmmoType)

 

Figure A-16. FEV With FCR Schema Sibling to Previous Existing Root FCR Schema 
Added to FE 

 

constituent CCR Schema, CCR Syntax, and CCR Semantics components, is then 

included with groundCombatVehicle_View7 and associations established between the 

CCR Schema and FCR Schema for future use by the translator.  Syntax and semantics 
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components for the FCRs and CCRs as well as all FEVs whose FCR Schemas are 

descendants of GroundCombatVehicle_View4_FCR_Schema have been omitted to 

enhance readability.  

C. SUMMARY 
Appendix A details the modifications to the Federation Interoperability Object 

Model (FIOM) required in order to provide the required correspondence between 

component (CCR) and federation (FCR) class representation schemas during CCR 

registration.  Procedures are presented for cases where 1) a new FE with Federation 

Entity View (FEV) must be defined for the FIOM to enable CCR registration or 2) an 

existing FE is used for CCR registration.  If an existing FE is used, then either the CCR 

will be included with one of the FE’s existing FEVs or with a new FEV defined by 

generalization or specialization of an existing FEV’s FCR Schema.  The OOMI IDE 

provides computer aid to the FIOM modification process during CCR registration as 

indicated in Appendix A Sections A and B. 
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